14 resultados para HYDROGEN-BOND

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The title compound, C11H11NO3, has two mol-ecules in the asymmetric unit, which differ in the orientation of their side-chain OH groups, allowing them to form inter-molecular O - H⋯O hydrogen bonds to different acceptors. In one case, the acceptor is the OH group of the other mol-ecule, and in the other case it is an imide O=C group. This is the first example in the N-substituted phthalimide series in which independent mol-ecules have different types of acceptor. Mol-ecular-orbital calculations place the greatest negative charge on the OH group. © 2008 International Union of Crystallography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A survey of crystal structures containing hydantoin, dihydrouracil and uracil derivatives in the Cambridge Structural Database revealed four main types of hydrogen bond motifs when derivatives with extra substituents able to interfere with the main motif are excluded. All these molecules contain two hydrogen bond donors and two hydrogen bond acceptors in the sequence of NH, C = O, NH, and C=O groups within a 5-membered ring (hydantoin) and two 6-membered rings (dihydrouracil and uracil). In all cases, both ring NH groups act as donors in the main hydrogen bond motif but there is an excess of hydrogen bond acceptors (two C=O able to accept twice each) and so two possibilities are found: (i) each carbonyl O atom may accept one hydrogen bond or (ii) one carbonyl O atom may accept two hydrogen bonds while the other does not participate in the hydrogen bonding. We observed different preferences in the type and symmetry of the motifs adopted by the different derivatives, and a good agreement is found between motifs observed experimentally and those predicted using computational methods. We identified certain molecular factors such as chirality, substituent size and the possibility of C-H⋯O interactions as important factors influencing the motif observation. © 2012 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hydrogen bonds play important roles in maintaining the structure of proteins and in the formation of most biomolecular protein-ligand complexes. All amino acids can act as hydrogen bond donors and acceptors. Among amino acids, Histidine is unique, as it can exist in neutral or positively charged forms within the physiological pH range of 5.0 to 7.0. Histidine can thus interact with other aromatic residues as well as forming hydrogen bonds with polar and charged residues. The ability of His to exchange a proton lies at the heart of many important functional biomolecular interactions, including immunological ones. By using molecular docking and molecular dynamics simulation, we examine the influence of His protonation/deprotonation on peptide binding affinity to MHC class II proteins from locus HLA-DP. Peptide-MHC interaction underlies the adaptive cellular immune response, upon which the next generation of commercially-important vaccines will depend. Consistent with experiment, we find that peptides containing protonated His residues bind better to HLA-DP proteins than those with unprotonated His. Enhanced binding at pH 5.0 is due, in part, to additional hydrogen bonds formed between peptide His+ and DP proteins. In acidic endosomes, protein His79β is predominantly protonated. As a result, the peptide binding cleft narrows in the vicinity of His79β, which stabilizes the peptide - HLA-DP protein complex. © 2014 Bentham Science Publishers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poor water solubility leads to low dissolution rate and consequently, it can limit bioavailability. Solid dispersions, where the drug is dispersed into an inert, hydrophilic polymer matrix can enhance drug dissolution. Solid dispersions were prepared using phenacetin and phenylbutazone as model drugs with polyethylene glycol (PEG) 8000 (carrier), by melt fusion method. Phenacetin and phenylbutazone displayed an increase in the dissolution rate when formulated as solid dispersions as compared with their physical mixture and drug alone counterparts. Characterisation of the solid dispersions was performed using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). DSC studies revealed that drugs were present in the amorphous form within the solid dispersions. FTIR spectra for the solid dispersions of drugs suggested that there was a lack of interaction between PEG 8000 and the drug. However, the physical mixture of phenacetin with PEG 8000 indicated the formation of hydrogen bond between phenacetin and the carrier. Permeability of phenacetin and phenylbutazone was higher for solid dispersions as compared with that of drug alone across Caco-2 cell monolayers. Permeability studies have shown that both phenacetin and phenylbutazone, and their solid dispersions can be categorised as well-absorbed compounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The organic matter in five oil shales (three from the Kimmeridge Clay sequence, one from the Oxford Clay sequence and one from the Julia Creek deposits in Australia) has been isolated by acid demineralisation, separated into kerogens and bitumens by solvent extraction and then characterised in some detail by chromatographic, spectroscopic and degradative techniques. Kerogens cannot be characterised as easily as bitumens because of their insolubility, and hence before any detailed molecular information can be obtained from them they must be degraded into lower molecular weight, more soluble components. Unfortunately, the determination of kerogen structures has all too often involved degradations that were far too harsh and which lead to destruction of much of the structural information. For this reason a number of milder more selective degradative procedures have been tested and used to probe the structure of kerogens. These are: 1. Lithium aluminium hydride reduction. - This procedure is commonly used to remove pyrite from kerogens and it may also increase their solubility by reduction of labile functional groups. Although reduction of the kerogens was confirmed, increases in solubility were correlated with pyrite content and not kerogen reduction. 2. O-methylation in the presence of a phase transfer catalyst. - By the removal of hydrogen bond interactions via O-methylation, it was possible to determine the contribution of such secondary interactions to the insolubility of the kerogens. Problems were encountered with the use of the phase transfer catalyst. 3. Stepwise alkaline potassium permanganate oxidation. - Significant kerogen dissolution was achieved using this procedure but uncontrolled oxidation of initial oxidation products proved to be a problem. A comparison with the peroxytrifluoroaceticacid oxidation of these kerogens was made. 4. Peroxytrifluoroacetic acid oxidation. - This was used because it preferentially degrades aromatic rings whilst leaving any benzylic positions intact. Considerable conversion of the kerogens into soluble products was achieved with this procedure. At all stages of degradation the products were fully characterised where possible using a variety of techniques including elemental analysis, solution state 1H and 13C nuclear magnetic resonance, solid state 13C nuclear magnetic resonance, gel-permeationchromatography, gas chromatography-mass spectroscopy, fourier transform infra-red spectroscopy and some ultra violet-visible spectroscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An uptake system was developed using Caco-2 cell monolayers and the dipeptide, glycyl-[3H]L-proline, as a probe compound. Glycyl-[3H]L-proline uptake was via the di-/tripeptide transport system (DTS) and, exhibited concentration-, pH- and temperature-dependency. Dipeptides inhibited uptake of the probe, and the design of the system allowed competitors to be ranked against one another with respect to affinity for the transporter. The structural features required to ensure or increase interaction with the DTS were defined by studying the effect of a series of glycyl-L-proline and angiotensin-converting enzyme (ACE)-inhibitor (SQ-29852) analogues on the uptake of the probe. The SQ-29852 structure was divided into six domains (A-F) and competitors were grouped into series depending on structural variations within specific regions. Domain A was found to prefer a hydrophobic function, such as a phenyl group, and was intolerant to positive charges and H+ -acceptors and donors. SQ-29852 analogues were more tolerant of substitutions in the C domain, compared to glycyl-L-proline analogues, suggesting that interactions along the length of the SQ-29852 molecule may override the effects of substitutions in the C domain. SQ-29852 analogues showed a preference for a positive function, such as an amine group in this region, but dipeptide structures favoured an uncharged substitution. Lipophilic substituents in domain D increased affinity of SQ-29852 analogues with the DTS. A similar effect was observed for ACE-NEP inhibitor analogues. Domain E, corresponding to the carboxyl group was found to be tolerant of esterification for SQ-29852 analogues but not for dipeptides. Structural features which may increase interaction for one series of compounds, may not have the same effect for another series, indicating that the presence of multiple recognition sites on a molecule may override the deleterious effect of anyone change. Modifying current, poorly absorbed peptidomimetic structures to fit the proposed hypothetical model may improve oral bioavailability by increasing affinity for the DTS. The stereochemical preference of the transporter was explored using four series of compounds (SQ-29852, lysylproline, alanylproline and alanylalanine enantiomers). The L, L stereochemistry was the preferred conformation for all four series, agreeing with previous studies. However, D, D enantiomers were shown in some cases to be substrates for the DTS, although exhibiting a lower affinity than their L, L counterparts. All the ACE-inhibitors and β-lactam antibiotics investigated, produced a degree of inhibition of the probe, and thus show some affinity for the DTS. This contrasts with previous reports that found several ACE inhibitors to be absorbed via a passive process, thus suggesting that compounds are capable of binding to the transporter site and inhibiting the probe without being translocated into the cell. This was also shown to be the case for oligodeoxynucleotide conjugated to a lipophilic group (vitamin E), and highlights the possibility that other orally administered drug candidates may exert non-specific effects on the DTS and possibly have a nutritional impact. Molecular modelling of selected ACE-NEP inhibitors revealed that the three carbonyl functions can be oriented in a similar direction, and this conformation was found to exist in a local energy-minimised state, indicating that the carbonyls may possibly be involved in hydrogen-bond formation with the binding site of the DTS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tuberculosis is one of the most devastating diseases in the world primarily due to several decades of neglect and an emergence of multidrug-resitance strains (MDR) of M. tuberculosis together with the increased incidence of disseminated infections produced by other mycobacterium in AIDS patients. This has prompted the search for new antimycobacterial drugs. A series of pyridine-2-, pyridine-3-, pyridine-4-, pyrazine and quinoline-2-carboxamidrazone derivatives and new classes of carboxamidrazone were prepared in an automated fashion and by traditional synthesis. Over nine hundred synthesized compounds were screened for their anti mycobacterial activity against M. fortutium (NGTG 10394) as a surrogate for M. tuberculosis. The new classes of amidrazones were also screened against tuberculosis H37 Rv and antimicrobial activities against various bacteria. Fifteen tested compounds were found to provide 90-100% inhibition of mycobacterium growth of M. tuberculosis H37 Rv in the primary screen at 6.25 μg mL-1. The most active compound in the carboxamidrazone amide series had an MIG value of 0.1-2 μg mL-1 against M. fortutium. The enzyme dihydrofolate reductase (DHFR) has been a drug-design target for decades. Blocking of the enzymatic activity of DHFR is a key element in the treatment of many diseases, including cancer, bacterial and protozoal infection. The x-ray structure of DHFR from M. tuberculosis and human DHFR were found to have differences in substrate binding site. The presence of glycerol molecule in the Xray structure from M. tuberculosis DHFR provided opportunity to design new antifolates. The new antifolates described herein were designed to retain the pharmcophore of pyrimethamine (2,4- diamino-5(4-chlorophenyl)-6-ethylpyrimidine), but encompassing a range of polar groups that might interact with the M. tuberculosis DHFR glycerol binding pockets. Finally, the research described in this thesis contributes to the preparation of molecularly imprinted polymers for the recognition of 2,4-diaminopyrimidine for the binding the target. The formation of hydrogen bonding between the model functional monomer 5-(4-tert-butyl-benzylidene)-pyrimidine-2,4,6-trione and 2,4-diaminopyrimidine in the pre-polymerisation stage was verified by 1H-NMR studies. Having proven that 2,4-diaminopyrimidine interacts strongly with the model 5-(4-tert-butylbenzylidene)- pyrimidine-2,4,6-trione, 2,4-diaminopyrimidine-imprinted polymers were prepared using a novel cyclobarbital derived functional monomer, acrylic acid 4-(2,4,6-trioxo-tetrahydro-pyrimidin-5- ylidenemethyl)phenyl ester, capable of multiple hydrogen bond formation with the 2,4- diaminopyrimidine. The recognition property of the respective polymers toward the template and other test compounds was evaluated by fluorescence. The results demonstrate that the polymers showed dose dependent enhancement of fluorescence emissions. In addition, the results also indicate that synthesized MIPs have higher 2,4-diaminopyrimidine binding ability as compared with corresponding non-imprinting polymers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis describes the production of advanced materials comprising a wide array of polymer-based building blocks. These materials include bio-hybrid polymer-peptide conjugates, based on phenylalanine and poly(ethylene oxide), and polymers with intrinsic microporosity (PIMs). Polymer-peptides conjugates were previously synthesised using click chemistry. Due to the inherent disadvantages of the reported synthesis, a new, simpler, inexpensive protocol was sought. Three synthetic methods based on amidation chemistry were investigated for both oligopeptide and polymerpeptide coupling. The resulting conjugates produced were then assessed by various analytical techniques, and the new synthesis was compared with the established protocol. An investigation was also carried out focussing on polymer-peptide coupling via ester chemistry, involving deprotection of the carboxyl terminus of the peptide. Polymer-peptide conjugates were also assessed for their propensity to self-assemble into thixotropic gels in an array of solvent mixtures. Determination of the rules governing this particular self-assembly (gelation) was required. Initial work suggested that at least four phenylalanine peptide units were necessary for self-assembly, due to favourable hydrogen bond interactions. Quantitative analysis was carried out using three analytical techniques (namely rheology, FTIR, and confocal microscopy) to probe the microstructure of the material and provided further information on the conditions for self-assembly. Several polymers were electrospun in order to produce nanofibres. These included novel materials such as PIMs and the aforementioned bio-hybrid conjugates. An investigation of the parameters governing successful fibre production was carried out for PIMs, polymer-peptide conjugates, and for nanoparticle cages coupled to a polymer scaffold. SEM analysis was carried out on all material produced during these electrospinning experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Restricted rotation in indol-3-yl-N-alkyl- and indol-3-yl-N,N-dialkyl-glyoxalylamides can in principle give the syn-periplanar and anti-periplanar rotamers. In asymmetrically disubstituted glyoxalylamides, steric effects lead to the occurrence of both rotamers, as observed by NMR spectroscopy. The predominant peak corresponds with the anti rotamer, in which the bulkier alkyl group is orientated trans to the amide carbonyl group. In monoalkylated glyoxalylamides, only one set of peaks is observed, consistent with the presence of only one rotamer. Crystal structures of 5-methoxyindole-3-yl-N-tert-butylglyoxalylamide, indole-3-yl-N-tert-butylglyoxalylamide, and indole-3-yl-N-isopropylglyoxalylamide reported here reveal a syn conformation held by an intramolecular N-HO hydrogen bond.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epitope identification is the basis of modern vaccine design. The present paper studied the supermotif of the HLA-A3 superfamily, using comparative molecular similarity indices analysis (CoMSIA). Four alleles with high phenotype frequencies were used: A*1101, A*0301, A*3101 and A*6801. Five physicochemical properties—steric bulk, electrostatic potential, local hydro-phobicity, hydrogen-bond donor and acceptor abilities—were considered and ‘all fields’ models were produced for each of the alleles. The models have a moderate level of predictivity and there is a good correlation between the data. A revised HLA-A3 supermotif was defined based on the comparison of favoured and disfavoured properties for each position of the MHC bound peptide. The present study demonstrated that CoMSIA is an effective tool for studying peptide–MHC interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: HLA-DPs are class II MHC proteins mediating immune responses to many diseases. Peptides bind MHC class II proteins in the acidic environment within endosomes. Acidic pH markedly elevates association rate constants but dissociation rates are almost unchanged in the pH range 5.0 - 7.0. This pH-driven effect can be explained by the protonation/deprotonation states of Histidine, whose imidazole has a pKa of 6.0. At pH 5.0, imidazole ring is protonated, making Histidine positively charged and very hydrophilic, while at pH 7.0 imidazole is unprotonated, making Histidine less hydrophilic. We develop here a method to predict peptide binding to the four most frequent HLA-DP proteins: DP1, DP41, DP42 and DP5, using a molecular docking protocol. Dockings to virtual combinatorial peptide libraries were performed at pH 5.0 and pH 7.0. Results: The X-ray structure of the peptide - HLA-DP2 protein complex was used as a starting template to model by homology the structure of the four DP proteins. The resulting models were used to produce virtual combinatorial peptide libraries constructed using the single amino acid substitution (SAAS) principle. Peptides were docked into the DP binding site using AutoDock at pH 5.0 and pH 7.0. The resulting scores were normalized and used to generate Docking Score-based Quantitative Matrices (DS-QMs). The predictive ability of these QMs was tested using an external test set of 484 known DP binders. They were also compared to existing servers for DP binding prediction. The models derived at pH 5.0 predict better than those derived at pH 7.0 and showed significantly improved predictions for three of the four DP proteins, when compared to the existing servers. They are able to recognize 50% of the known binders in the top 5% of predicted peptides. Conclusions: The higher predictive ability of DS-QMs derived at pH 5.0 may be rationalised by the additional hydrogen bond formed between the backbone carbonyl oxygen belonging to the peptide position before p1 (p-1) and the protonated ε-nitrogen of His 79β. Additionally, protonated His residues are well accepted at most of the peptide binding core positions which is in a good agreement with the overall negatively charged peptide binding site of most MHC proteins. © 2012 Patronov et al.; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemistry used in key bond-forming steps to prepare nucleobases with designed patterns of hydrogen bonding is surveyed. Incorporation of the nucleobases into DNA and RNA oligomers is achieved either chemically using building blocks such as nucleoside phosphoramidites or enzymatically using nucleotide triphosphates. By varying the hydrogen bonding pattern within nucleobases, and by incorporating additional substituents, new structures have been designed that "reach over" so that contacts with both strands in targeted duplex DNA can be made in antigene strategies to control gene expression. Various new base-pairing systems have been evaluated that expand the genetic alphabet beyond Watson-Crick base pairs A.T and G.C. For example, benzo-homologated analogs of the natural DNA bases represent a new genetic set of orthogonal, size-expanded derivatives that have been shown to encode amino acids of a protein in a living organism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature reveal completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H2 up to ∼190 K and for D2 up to ∼140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation.