6 resultados para HYBRID NANOPARTICLES

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient three-dimensional (3D) hybrid material of nitrogen-doped graphene sheets (N-RGO) supporting molybdenum disulfide (MoS2) nanoparticles with high-performance electrocatalytic activity for hydrogen evolution reaction (HER) is fabricated by using a facile hydrothermal route. Comprehensive microscopic and spectroscopic characterizations confirm the resulting hybrid material possesses a 3D crumpled few-layered graphene network structure decorated with MoS2 nanoparticles. Electrochemical characterization analysis reveals that the resulting hybrid material exhibits efficient electrocatalytic activity toward HER under acidic conditions with a low onset potential of 112 mV and a small Tafel slope of 44 mV per decade. The enhanced mechanism of electrocatalytic activity has been investigated in detail by controlling the elemental composition, electrical conductance and surface morphology of the 3D hybrid as well as Density Functional Theory (DFT) calculations. This demonstrates that the abundance of exposed active sulfur edge sites in the MoS2 and nitrogen active functional moieties in N-RGO are synergistically responsible for the catalytic activity, whilst the distinguished and coherent interface in MoS 2 /N-RGO facilitates the electron transfer during electrocatalysis. Our study gives insights into the physical/chemical mechanism of enhanced HER performance in MoS2/N-RGO hybrids and illustrates how to design and construct a 3D hybrid to maximize the catalytic efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

C–C bond-forming, cross-coupling reactions of organohalides with nucleophilic compounds, catalysed by palladium, are amongst the most important chemical reactions available to the synthetic chemist. The intimate mechanisms of these reactions, involving Pd0/PdII redox steps, have been of great historical interest and continue to be so. The myriad of possible mechanisms is reviewed in this chapter. The interplay of mononuclear Pd species with higher order Pd species, e.g. nanoclusters/nanoparticles are considered as being equally important in cross-coupling reaction mechanisms. A focus is placed on trichotomic behaviour of cross-coupling catalytic manifolds, from homogeneous to hybrid homogeneous–heterogeneous to truly heterogeneous behaviour. For the latter, surface chemistry and metal atom leaching (and various experimental techniques) are broadly discussed. It is now clear that mechanism for general cross‐coupling reactions, that is as presented to undergraduate students studying Chemistry degrees across the world, is undoubtedly more complex than first thought. New opportunities for catalyst design have therefore emerged in the area of Pd nanoparticles and nanocatalysis, with some wonderful applications especially in chemical biology, providing a snapshot of what the future might hold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid nanocomposites based on N-doped SrTiO3 nanoparticles wrapped in g-C3N4 nanosheets were successfully prepared by a facile and reproducible polymeric citrate and thermal exfoliation method. The results clearly indicated that the N-doped SrTiO3 nanoparticles are successfully wrapped in layers of the g-C3N4 nanosheets. The g-C3N4/N-doped SrTiO3 nanocomposites showed absorption edges at longer wavelengths compared with the pure g-C3N4 as well as N-doped SrTiO3. The hybrid nanocomposites exhibit an improved photocurrent response and photocatalytic activity under visible light irradiation. Interestingly, the hybrid nanocomposite possesses high photostability and reusability. Based on experimental results, the possible mechanism for prolonged lifetime of the photoinduced charge carrier was also discussed. The high performance of the g-C3N4/N-doped SrTiO3 photocatalysts is due to the synergic effect at the interface of g-C3N4 and N-doped SrTiO3 hetero/nanojunction including the high separation efficiency of the charge carrier, band energy matching and the suppressed recombination rate. Therefore, the hybrid photocatalyst could be of potential interest for water splitting and environmental remediation under natural sunlight.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CO vibrational spectra over catalytic nanoparticles under high coverages/pressures are discussed from a DFT perspective. Hybrid B3LYP and PBE DFT calculations of CO chemisorbed over Pd4 and Pd13 nanoclusters, and a 1.1 nm Pd38 nanoparticle, have been performed in order to simulate the corresponding coverage dependent infrared (IR) absorption spectra, and hence provide a quantitative foundation for the interpretation of experimental IR spectra of CO over Pd nanocatalysts. B3LYP simulated IR intensities are used to quantify site occupation numbers through comparison with experimental DRIFTS spectra, allowing an atomistic model of CO surface coverage to be created. DFT adsorption energetics for low CO coverage (θ → 0) suggest the CO binding strength follows the order hollow > bridge > linear, even for dispersion-corrected functionals for sub-nanometre Pd nanoclusters. For a Pd38 nanoparticle, hollow and bridge-bound are energetically similar (hollow ≈ bridge > atop). It is well known that this ordering has not been found at the high coverages used experimentally, wherein atop CO has a much higher population than observed over Pd(111), confirmed by our DRIFTS spectra for Pd nanoparticles supported on a KIT-6 silica, and hence site populations were calculated through a comparison of DFT and spectroscopic data. At high CO coverage (θ = 1), all three adsorbed CO species co-exist on Pd38, and their interdiffusion is thermally feasible at STP. Under such high surface coverages, DFT predicts that bridge-bound CO chains are thermodynamically stable and isoenergetic to an entirely hollow bound Pd/CO system. The Pd38 nanoparticle undergoes a linear (3.5%), isotropic expansion with increasing CO coverage, accompanied by 63 and 30 cm− 1 blue-shifts of hollow and linear bound CO respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A facile and reproducible template free in situ precipitation method has been developed for the synthesis of Ag3PO4 nanoparticles on the surface of a g-C3N4 photocatalyst at room temperature. The g-C3N4–Ag3PO4 organic–inorganic hybrid nanocomposite photocatalysts were characterized by various techniques. TEM results show the in situ growth of finely distributed Ag3PO4 nanoparticles on the surface of the g-C3N4 sheet. The optimum photocatalytic activity of g-C3N4–Ag3PO4 at 25 wt% of g-C3N4 under visible light is almost 5 and 3.5 times higher than pure g-C3N4 and Ag3PO4 respectively. More attractively, the stability of Ag3PO4 was improved due to the in situ deposition of Ag3PO4 nanoparticles on the surface of the g-C3N4 sheet. The improved performance of the g-C3N4–Ag3PO4 hybrid nanocomposite photocatalysts under visible light irradiation was induced by a synergistic effect, including high charge separation efficiency of the photoinduced electron–hole pair, the smaller particle size, relatively high surface area and the energy band structure. Interestingly, the heterostructured g-C3N4–Ag3PO4 nanocomposite significantly reduces the use of the noble metal silver, thereby effectively reducing the cost of the Ag3PO4 based photocatalyst.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein we demonstrate a facile, reproducible, and template-free strategy to prepare g-C3N4–Fe3O4 nanocomposites by an in situ growth mechanism. The results indicate that monodisperse Fe3O4 nanoparticles with diameters as small as 8 nm are uniformly deposited on g-C3N4 sheets, and as a result, aggregation of the Fe3O4 nanoparticles is effectively prevented. The as-prepared g-C3N4–Fe3O4 nanocomposites exhibit significantly enhanced photocatalytic activity for the degradation of rhodamine B under visible-light irradiation. Interestingly, the g-C3N4–Fe3O4 nanocomposites showed good recyclability without loss of apparent photocatalytic activity even after six cycles, and more importantly, g-C3N4–Fe3O4 could be recovered magnetically. The high performance of the g-C3N4–Fe3O4 photocatalysts is due to a synergistic effect including the large surface-exposure area, high visible-light-absorption efficiency, and enhanced charge-separation properties. In addition, the superparamagnetic behavior of the as-prepared g-C3N4–Fe3O4 nanocomposites also makes them promising candidates for applications in the fields of lithium storage capacity and bionanotechnology.