13 resultados para HUMAN PERIODONTAL-DISEASE

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isolation of spirochetes from severe ovine foot disease has been reported recently by our research group. In this study we describe the preliminary classification of this spirochete based on nucleotide sequence analysis of the PCR-amplified 16S rRNA gene. Phylogenetic analysis of this sequence in comparison with other previously reported 16S rRNA gene sequences showed that the spirochete belonged to the treponemal phylotype Treponema vincentii which has been associated with bovine digital dermatitis and human periodontal disease. Further work is required to define the common virulence determinants of these closely related treponemes in the aetiology of these tissue destructive diseases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Mouse models of cystic fibrosis (CF) fail to truly represent the respiratory pathology. We have consequently developed human airways cell culture models to address this. The impact of cigarette smoke within the CF population is well documented, with exposure being known to worsen lung function. As nicotine is often perceived to be a less harmful component of tobacco smoke, this research aimed to identify its effects upon viability and inflammatory responses of CF (IB3-1) and CF phenotype corrected (C38) bronchial epithelial cells. Methods: IB3-1 and C38 cell lines were exposed to increasing concentrations of nicotine (0.55-75μM) for 24 hours. Cell viability was assessed via Cell Titre Blue and the inflammatory response with IL-6 and IL-8 ELISA. Results: CF cells were more sensitive; nicotine significantly (P<0.05) reduced cell viability at all concentrations tested, but failed to have a marked effect on C38 viability. Whilst nicotine induced anti-inflammatory effects in CF cells with a significant reduction in IL-6 and IL-8 release, it had no effect on chemokine release by C38 cells. Conclusion: CF cells may be more vulnerable to inhaled toxicants than non-CF cells. As mice lack a number of human nicotinic receptor subunits and fail to mimic the characteristic pathology of CF, these data emphasise the importance of employing relevant human cell lines to study a human-specific disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is currently great scientific and medical interest in the potential of tissue grown from stem cells. These cells present opportunities for generating model systems for drug screening and toxicological testing which would be expected to be more relevant to human outcomes than animal based tissue preparations. Newly realised astrocytic roles in the brain have fundamental implications within the context of stem cell derived neuronal networks. If the aim of stem cell neuroscience is to generate functional neuronal networks that behave as networks do in the brain, then it becomes clear that we must include and understand all the cellular components that comprise that network, and which are important to support synaptic integrity and cell to cell signalling. We have shown that stem cell derived neurons exhibit spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling (1). Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, astrocytes exhibit morphology and functional properties consistent with this glial cell type. Astrocytes also respond to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. Astroctyes also generate propagating calcium waves that are gap junction and purinergic signalling dependent. Our results show that stem cell derived astrocytes exhibit appropriate functionality and that stem cell neuronal networks interact with astrocytic networks in co-culture. Using mixed cultures of stem cell derived neurons and astrocytes, we have also shown both cell types also modulate their glucose uptake, glycogen turnover and lactate production in response to glutamate as well as increased neuronal activity (2). This finding is consistent with their neuron-astrocyte metabolic coupling thus demonstrating a tractable human model, which will facilitate the study of the metabolic coupling between neurons and astrocytes and its relationship with CNS functional issues ranging from plasticity to neurodegeneration. Indeed, cultures treated with oligomers of amyloid beta 1-42 (Aβ1-42) also display a clear hypometabolism, particularly with regard to utilization of substrates such as glucose (3). Both co-cultures of neurons and astrocytes and purified cultures of astrocytes showed a significant decrease in glucose uptake after treatment with 2 and 0.2 μmol/L Aβ at all time points investigated (p <0.01). In addition, a significant increase in the glycogen content of cells was also measured. Mixed neuron and astrocyte co-cultures as well as pure astrocyte cultures showed an initial decrease in glycogen levels at 6 hours compared with control at 0.2 μmol/L and 2 μmol/L P <0.01. These changes were accompanied by changes in NAD+/NADH (P<0.05), ATP (P<0.05), and glutathione levels (P<0.05), suggesting a disruption in the energy-redox axis within these cultures. The high energy demands associated with neuronal functions such as memory formation and protection from oxidative stress put these cells at particular risk from Aβ-induced hypometabolism. As numerous cell types interact in the brain it is important that any in vitro model developed reflects this arrangement. Our findings indicate that stem cell derived neuron and astrocyte networks can communicate, and so have the potential to interact in a tripartite manner as is seen in vivo. This study therefore lays the foundation for further development of stem cell derived neurons and astrocytes into therapeutic cell replacement and human toxicology/disease models. More recently our data provides evidence for a detrimental effect of Aβ on carbohydrate metabolism in both neurons and astrocytes. As a purely in vitro system, human stem cell models can be readily manipulated and maintained in culture for a period of months without the use of animals. In our laboratory cultures can be maintained in culture for up to 12 months months thus providing the opportunity to study the consequences of these changes over extended periods of time relevant to aspects of the disease progression time frame in vivo. In addition, their human origin provides a more realistic in vitro model as well as informing other human in vitro models such as patient-derived iPSC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neurofilament inclusion disease (NID) is a novel neurodegenerative disease characterized histologically by the presence of neurofilament positive neuronal inclusions (NI) and swollen achromatic neurons (SN). The density and distribution of NI and SN were studied in areas of the temporal lobe in four cases of NID. In NID, the density of the NI and SN was greater in areas of the cerebral cortex compared with the hippocampus and dentate gyrus. Lesion densities were similar in the different gyri of the temporal cortex and in the various cornu ammonis sectors of the hippocampus. In the cerebral cortex, the density of the NI and SN was greater in the lower compared with the upper cortical laminae. There was no significant correlation between the densities of the NI and SN. The distribution of the temporal lobe pathology of NID has several differences from that reported in Pick's disease and corticobasal degeneration supporting the hypothesis that NID is a novel and unique type of neurodegenerative disease. © 2003 Elsevier Ireland Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To test the hypothesis that the distribution of the pathology in variant Creutzfeldt-Jakob disease (vCJD) represents haematogenous spread of the disease, we studied the spatial correlation between the vacuolation, prion protein (PrP) deposits, and the blood vessel profiles in the cerebral cortex, hippocampus, dentate gyrus, and cerebellum of 11 cases of the disease. In the majority of areas, there were no significant spatial correlations between either the vacuolation or the diffuse type of PrP deposit and the blood vessels. By contrast, a consistent pattern of spatial correlation was observed between the florid PrP deposits and blood vessels mainly in the cerebral cortex. The frequency of positive spatial correlations was similar in different anatomical areas of the cerebral cortex and in the upper compared with the lower laminae. Hence, with the exception of the florid deposits, the data do not demonstrate a spatial relationship between the pathological features of vCJD and blood vessels. The spatial correlation of the florid deposits and blood vessels may be attributable to factors associated with the blood vessels that promote the aggregation of PrP to form a condensed core rather than reflecting the haematogenous spread of the disease. © 2003 Elsevier Ireland Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The density of diffuse, primitive, classic and compact β-amyloid ( β A4) deposits was estimated in the hippocampus and adjacent gyri in human patients with Down's syndrome (DS) and sporadic Alzheimer's disease (AD). The objective of the study was to determine whether there were differences in β A4 deposition in DS and sporadic AD and whether these differences could be attributed to overexpression of the amyloid precursor gene (APP) in DS. Total β A4 deposit density was greater in DS than AD in all brain regions studied but the DS/AD density ratios varied between brain regions. In the majority of brain regions, the ratio of primitive to diffuse β A4 deposits was greater in DS but the ratio of classic to diffuse deposits was greater in AD. The data were consistent with the hypothesis that overexpression of the APP gene in DS may lead to increased β A4 deposition. However, local brain factors also appear to be important in β A4 deposition in DS. Overexpression of the APP gene may also be responsible for increased production of paired helical filaments (PHF) and result in enhanced formation of primitive β A4 deposits in DS. In addition, increased formation of classic deposits in AD suggests that factors necessary for the production of a compact amyloid core are enhanced in AD compared with DS. © 1994.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The numerical density of senile plaques (SP) and neurofibrillary tangles (NFT) as revealed by the Glees silver method was compared with SP and NFT revealed by the Gallyas method and with amyloid (A4) deposits in immunostained sections in 6 elderly cases of Alzheimer's disease. The density of NFT was generally greater and A4 lower in tissue from hippocampus compared with the neocortex suggesting that A4 deposition was less important than the degree of paired helical filament (PHF) related damage in the hippocampus. The density of Glees SP was positively correlated Gallyas SP weakly correlated with A4 deposit number. A stepwise multiple regression analysis which included A4 deposit and Gallyas SP density and accounted for 54% of the variation in Glees SP density. Hence, different populations of SP were revealed by the different staining methods. The results suggested that the Glees method may stain a population of SP in a region of cortex where both amyloid deposition and neurofibrillary changes have occurred.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article describes the history of the Human Genome Project, how the human genome was sequenced, and analyses the likely impact which the results will have on the diagnosis, scientific understanding and, ultimately, treatment of ocular disease in the future.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The 21-day experimental gingivitis model, an established noninvasive model of inflammation in response to increasing bacterial accumulation in humans, is designed to enable the study of both the induction and resolution of inflammation. Here, we have analyzed gingival crevicular fluid, an oral fluid comprising a serum transudate and tissue exudates, by LC-MS/MS using Fourier transform ion cyclotron resonance mass spectrometry and iTRAQ isobaric mass tags, to establish meta-proteomic profiles of inflammation-induced changes in proteins in healthy young volunteers. Across the course of experimentally induced gingivitis, we identified 16 bacterial and 186 human proteins. Although abundances of the bacterial proteins identified did not vary temporally, Fusobacterium outer membrane proteins were detected. Fusobacterium species have previously been associated with periodontal health or disease. The human proteins identified spanned a wide range of compartments (both extracellular and intracellular) and functions, including serum proteins, proteins displaying antibacterial properties, and proteins with functions associated with cellular transcription, DNA binding, the cytoskeleton, cell adhesion, and cilia. PolySNAP3 clustering software was used in a multilayered analytical approach. Clusters of proteins that associated with changes to the clinical parameters included neuronal and synapse associated proteins.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cognitive systems research involves the synthesis of ideas from natural and artificial systems in the analysis, understanding, and design of all intelligent systems. This chapter discusses the cognitive systems associated with the hippocampus (HC) of the human brain and their possible role in behaviour and neurodegenerative disease. The hippocampus (HC) is concerned with the analysis of highly abstract data derived from all sensory systems but its specific role remains controversial. Hence, there have been three major theories concerning its function, viz., the memory theory, the spatial theory, and the behavioral inhibition theory. The memory theory has its origin in the surgical destruction of the HC, which results in severe anterograde and partial retrograde amnesia. The spatial theory has its origin in the observation that neurons in the HC of animals show activity related to their location within the environment. By contrast, the behavioral inhibition theory suggests that the HC acts as a ‘comparator’, i.e., it compares current sensory events with expected or predicted events. If a set of expectations continues to be verified then no alteration of behavior occurs. If, however, a ‘mismatch’ is detected then the HC intervenes by initiating appropriate action by active inhibition of current motor programs and initiation of new data gathering. Understanding the cognitive systems of the hippocampus in humans may aid in the design of intelligent systems involved in spatial mapping, memory, and decision making. In addition, this information may lead to a greater understanding of the course of clinical dementia in the various neurodegenerative diseases in which there is significant damage to the HC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article discusses the structure, anatomical connections, and functions of the hippocampus (HC) of the human brain and its significance in neuropsychology and disease. The HC is concerned with the analysis of highly abstract data derived from all sensory systems but its specific role remains controversial. Hence, there have been three major theories concerning its function, viz., the memory theory, the spatial theory, and the behavioral inhibition system (BIS) theory. The memory theory has its origin in the surgical destruction of the HC, which results in severe anterograde and partial retrograde amnesia. The spatial theory has its origin in the observation that neurons in the HC of animals show activity related to their location within the environment. By contrast, the behavioral inhibition theory suggests that the HC acts as a ‘comparator’, i.e., it compares current sensory events with expected or predicted events. If a set of expectations continues to be verified then no alteration of behavior occurs. If, however, a ‘mismatch’ is detected then the HC intervenes by initiating appropriate action by active inhibition of current motor programs and initiation of new data gathering. Understanding the anatomical connections of the hippocampus may lead to a greater understanding of memory, spatial orientation, and states of anxiety in humans. In addition, HC damage is a feature of neurodegenerative diseases such as Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), Pick’s disease (PiD), and Creutzfeldt-Jakob disease (CJD) and understanding HC function may help to explain the development of clinical dementia in these disorders.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article discusses the structure, anatomical connections, and functions of the hippocampus (HC) of the human brain and its significance in neuropsychology and disease. The HC is concerned with the analysis of highly abstract data derived from all sensory systems but its specific role remains controversial. Hence, there have been three major theories concerning its function, viz., the memory theory, the spatial theory, and the behavioral inhibition system (BIS) theory. The memory theory has its origin in the surgical destruction of the HC, which results in severe anterograde and partial retrograde amnesia. The spatial theory has its origin in the observation that neurons in the HC of animals show activity related to their location within the environment. By contrast, the behavioral inhibition theory suggests that the HC acts as a 'comparator', i.e., it compares current sensory events with expected or predicted events. If a set of expectations continues to be verified then no alteration of behavior occurs. If, however, a 'mismatch' is detected then the HC intervenes by initiating appropriate action by active inhibition of current motor programs and initiation of new data gathering. Understanding the anatomical connections of the hippocampus may lead to a greater understanding of memory, spatial orientation, and states of anxiety in humans. In addition, HC damage is a feature of neurodegenerative diseases such as Alzheimer's disease (AD), dementia with Lewy bodies (DLB), Pick's disease (PiD), and Creutzfeldt-Jakob disease (CJD) and understanding HC function may help to explain the development of clinical dementia in these disorders.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Editorial