12 resultados para HUMAN LEUKOCYTE ANTIGEN

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human leukocyte antigen (HLA)-DM is a critical participant in antigen presentation that catalyzes the dissociation of the Class II-associated Invariant chain-derived Peptide (CLIP) from the major histocompatibility complex (MHC) Class II molecules. There is competition amongst peptides for access to an MHC Class II groove and it has been hypothesised that DM functions as a 'peptide editor' that catalyzes the replacement of one peptide for another within the groove. It is established that the DM catalyst interacts directly with the MHC Class II but the precise location of the interface is unknown. Here, we combine previously described mutational data with molecular docking and energy minimisation simulations to identify a putative interaction site of >4000A2 which agrees with known point mutational data for both the DR and DM molecule. The docked structure is validated by comparison with experimental data and previously determined properties of protein-protein interfaces. A possible dissociation mechanism is suggested by the presence of an acidic cluster near the N terminus of the bound peptide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background - Our previous studies showed that the direct injection of an adenovirus construct expressing urokinase-type plasminogen activator (uPA) into experimental venous thrombi significantly reduces thrombus weight. The systemic use of adenovirus vectors is limited by inherent hepatic tropism and inflammatory response. As macrophages are recruited into venous thrombi, it is reasonable to speculate that these cells could be used to target the adenovirus uPA (ad-uPA) gene construct to the thrombus. The aims of this study were to determine whether macrophages transduced with ad-uPA have increased fibrinolytic activity and whether systemic injection of transduced cells could be used to target uPA expression to the thrombus and reduce its size. Methods - The effect of up-regulating uPA was examined in an immortalized macrophage cell line (MM6) and macrophages differentiated from human blood monocyte-derived macrophages (HBMMs). Cells were infected with ad-uPA or blank control virus (ad-blank). Fibrinolytic mediator expression, cell viability, and cytokine expression were measured by activity assays and enzyme-linked immunosorbent assays. Monocyte migration was measured using a modified Boyden chamber assay. A model of venous thrombosis was developed and characterized in mice with severe combined immunodeficiency (SCID). This model was used to study whether systemically administered macrophages over-expressing uPA reduced thrombus size. Uptake of HBMMs into the thrombus induced in these mice was confirmed by a combination of PKH2-labeled cell tracking and colocalization with human leukocyte antigen (HLA) by immunohistology. Results - Compared with ad-blank, treated HBMMs transduction with ad-uPA increased uPA production by >1000-fold (P = .003), uPA activity by 150-fold (P = .0001), and soluble uPA receptor (uPAR) by almost twofold (P = .043). Expression of plasminogen activator inhibitor (PAI-1) and PAI-2 was decreased by about twofold (P = .011) and threefold (P = .005), respectively. Up-regulation of uPA had no effect on cell viability or inflammatory cytokine production compared with ad-blank or untreated cells. Ad-uPA transduction increased the migration rate of HBMMs (about 20%, P = .03) and MM6 cells (>twofold, P = .005) compared with ad-blank treated controls. Human macrophage recruitment into the mouse thrombus was confirmed by the colocalization of HLA with the PKH2-marked cells. Systemic injection of uPA-up-regulated HBMMs reduced thrombus weight by approximately 20% compared with ad-blank (P = .038) or sham-treated controls (P = .0028). Conclusion - Transduction of HBBM with ad-uPA increases their fibrinolytic activity. Systemic administration of uPA up-regulated HBBMs reduced thrombus size in an experimental model of venous thrombosis. Alternative methods of delivering fibrinolytic agents are worth exploring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological experiments often produce enormous amount of data, which are usually analyzed by data clustering. Cluster analysis refers to statistical methods that are used to assign data with similar properties into several smaller, more meaningful groups. Two commonly used clustering techniques are introduced in the following section: principal component analysis (PCA) and hierarchical clustering. PCA calculates the variance between variables and groups them into a few uncorrelated groups or principal components (PCs) that are orthogonal to each other. Hierarchical clustering is carried out by separating data into many clusters and merging similar clusters together. Here, we use an example of human leukocyte antigen (HLA) supertype classification to demonstrate the usage of the two methods. Two programs, Generating Optimal Linear Partial Least Square Estimations (GOLPE) and Sybyl, are used for PCA and hierarchical clustering, respectively. However, the reader should bear in mind that the methods have been incorporated into other software as well, such as SIMCA, statistiXL, and R.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular peptide vaccines contain T-cell epitopes. The main prerequisite for a peptide to act as a T-cell epitope is that it binds to a major histocompatibility complex (MHC) protein. Peptide MHC binder identification is an extremely costly experimental challenge since human MHCs, named human leukocyte antigen, are highly polymorphic and polygenic. Here we present EpiDOCK, the first structure-based server for MHC class II binding prediction. EpiDOCK predicts binding to the 23 most frequent human, MHC class II proteins. It identifies 90% of true binders and 76% of true non-binders, with an overall accuracy of 83%. EpiDOCK is freely accessible at http://epidock.ddg-pharmfac. net. © The Author 2013. Published by Oxford University Press. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A wide range of molecules acting as apoptotic cell-associated ligands, phagocyte-associated receptors or soluble bridging molecules have been implicated within the complex sequential processes that result in phagocytosis and degradation of apoptotic cells. Intercellular adhesion molecule 3 (ICAM-3, also known as CD50), a human leukocyte-restricted immunoglobulin super-family (IgSF) member, has previously been implicated in apoptotic cell clearance, although its precise role in the clearance process is ill defined. The main objective of this work is to further characterise the function of ICAM-3 in the removal of apoptotic cells. Using a range of novel anti-ICAM-3 monoclonal antibodies (mAbs), including one (MA4) that blocks apoptotic cell clearance by macrophages, alongside apoptotic human leukocytes that are normal or deficient for ICAM-3, we demonstrate that ICAM-3 promotes a domain 1-2-dependent tethering interaction with phagocytes. Furthermore, we demonstrate an apoptosis-associated reduction in ICAM-3 that results from release of ICAM-3 within microparticles that potently attract macrophages to apoptotic cells. Taken together, these data suggest that apoptotic cell-derived microparticles bearing ICAM-3 promote macrophage chemoattraction to sites of leukocyte cell death and that ICAM-3 mediates subsequent cell corpse tethering to macrophages. The defined function of ICAM-3 in these processes and profound defect in chemotaxis noted to ICAM-3-deficient microparticles suggest that ICAM-3 may be an important adhesion molecule involved in chemotaxis to apoptotic human leukocytes. © 2012 Macmillan Publishers Limited All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Adjuvants enhance or modify an immune response that is made to an antigen. An antagonist of the chemokine CCR4 receptor can display adjuvant-like properties by diminishing the ability of CD4+CD25+ regulatory T cells (Tregs) to down-regulate immune responses. Methodology Here, we have used protein modelling to create a plausible chemokine receptor model with the aim of using virtual screening to identify potential small molecule chemokine antagonists. A combination of homology modelling and molecular docking was used to create a model of the CCR4 receptor in order to investigate potential lead compounds that display antagonistic properties. Three-dimensional structure-based virtual screening of the CCR4 receptor identified 116 small molecules that were calculated to have a high affinity for the receptor; these were tested experimentally for CCR4 antagonism. Fifteen of these small molecules were shown to inhibit specifically CCR4-mediated cell migration, including that of CCR4+ Tregs. Significance Our CCR4 antagonists act as adjuvants augmenting human T cell proliferation in an in vitro immune response model and compound SP50 increases T cell and antibody responses in vivo when combined with vaccine antigens of Mycobacterium tuberculosis and Plasmodium yoelii in mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The HT-29 human colon adenocarcinoma cell line, like many epithelial cells, displays an undifferentiated phenotype when cultured on plastic substrata. Biochemical markers of differentiation, such as brush border associated enzymes and carcinoembryonic antigen were expressed at very low levels. The differentiation-inducing effects of the culture of HT-29 cells on collagen type I gels were evaluated, and were assessed by morphological appearance, brush border associated enzyme activities and the secretion of CEA. The effect that this more physiological environment had on their chemosensitivity to a panel of chemotherapeutic agents was determined, so as to indicate whether this system could be used to improve the selectivity of screening for novel anticancer agents. Initial studies were performed on HT-29 cells derived from cells seeded directly from plastic substrata onto the collagen gels (designated Non-PPC gels). Their time of exposure to the collagen was limited to the time course of a single experiment and the results suggested that a longer, more permanent exposure might produce a more pronounced differentiation. HT-29 cells were then passaged continuously on collagen gels for a minimum of 10 passages prior to experimentation (designated PPC gels). The same parameters were measured, and compared to those for the cells grown on plastic and on the non-passaged collagen gels (Non-PPC) from the original studies. Permanently passaged cells displayed a similar degree of morphological differentiation as the non-passaged cells, with both culture conditions resulting in a more pronounced differentiation than that achieved by culture on plastic. It was noted that the morphological differentiation observed was very heterogeneous, a situation also seen in xenografted tumours in vivo. The activity of alkaline phosphatase and the production of CEA was higher in the cells passaged on collagen (PPC) than the cells cultured on non-passaged collagen gel (Non-PPC) and plastic. The biochemical determination of aminopeptidase activity showed that collagen gel culture enhanced the activity in both non-passaged and passaged HT-29 cells above that of the cells cultured on plastic. However, immunocytochemical localization of aminopeptidase and sucrase-isomaltase of samples of cells grown on the various substrata for 7, 14, 21 and 28 days showed a reduction in both enzymes in the cells grown on collagen gels when compared to cells grown on plastic. The reason for the discrepancy between the two assays for aminopeptidase is at this stage unexplained. Although, there was evidence to suggest that the culture of HT-29 cells on collagen gels was capable of inducing morphological and biochemical markers of enterocytic differentiation, there were no differences in the chemosensitivity of the different cell groups to a panel of anticancer agents. Preliminary studies suggested that the ability of the cells to polarize by their culture on porous filter chambers without any exogenous ECM was sufficient to enhance HT-29 differentiation and the onset of differentiation was probably correlated with the production of ECM by the cells themselves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been postulated that immunogenicity results from the overall dissimilarity of pathogenic proteins versus the host proteome. We have sought to use this concept to discriminate between antigens and non-antigens of bacterial origin. Sets of 100 known antigenic and nonantigenic peptide sequences from bacteria were compared to human and mouse proteomes. Both antigenic and non-antigenic sequences lacked human or mouse homologues. Observed distributions were compared using the non-parametric Mann-Whitney test. The statistical null hypothesis was accepted, indicating that antigen and non-antigens did not differ significantly. Likewise, we were unable to determine a threshold able to separate meaningfully antigen from non-antigen. Thus, antigens cannot be predicted from pathogen genomes based solely on their dissimilarity to the human genome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational genome analysis enables systematic identification of potential immunogenic proteins within a pathogen. Immunogenicity is a system property that arises through the interaction of host and pathogen as mediated through the medium of a immunogenic protein. The overt dissimilarity of pathogenic proteins when compared to the host proteome is conjectured by some to be the determining principal of immunogenicity. Previously, we explored this idea in the context of Bacterial, Viral, and Fungal antigen. In this paper, we broaden and extend our analysis to include complex antigens of eukaryotic origin, arising from tumours and from parasite pathogens. For both types of antigen, known antigenic and non-antigenic protein sequences were compared to human and mouse proteomes. In contrast to our previous results, both visual inspection and statistical evaluation indicate a much wider range of homologues and a significant level of discrimination; but, as before, we could not determine a viable threshold capable of properly separating non-antigen from antigen. In concert with our previous work, we conclude that global proteome dissimilarity is not a useful metric for immunogenicity for presently available antigens arising from Bacteria, viruses, fungi, parasites, and tumours. While we see some signal for certain antigen types, using dissimilarity is not a useful approach to identifying antigenic molecules within pathogen genomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immunogenicity arises via many synergistic mechanisms, yet the overall dissimilarity of pathogenic proteins versus the host proteome has been proposed as a key arbiter. We have previously explored this concept in relation to Bacterial antigens; here we extend our analysis to antigens of viral and fungal origin. Sets of known viral and fungal antigenic and non-antigenic protein sequences were compared to human and mouse proteomes. Both antigenic and non-antigenic sequences lacked human or mouse homologues. Observed distributions were compared using the non-parametric Mann-Whitney test. The statistical null hypothesis was accepted, indicating that antigen and non-antigens did not differ significantly. Likewise, we could not determine a threshold able meaningfully to separate non-antigen from antigen. We conclude that viral and fungal antigens cannot be predicted from pathogen genomes based solely on their dissimilarity to mammalian genomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background:Cervical compressive myelopathy, e.g. due to spondylosis or ossification of the posterior longitudinal ligament is a common cause of spinal cord dysfunction. Although human pathological studies have reported neuronal loss and demyelination in the chronically compressed spinal cord, little is known about the mechanisms involved. In particular, the neuroinflammatory processes that are thought to underlie the condition are poorly understood. The present study assessed the localized prevalence of activated M1 and M2 microglia/macrophages in twy/twy mice that develop spontaneous cervical spinal cord compression, as a model of human disease.Methods:Inflammatory cells and cytokines were assessed in compressed lesions of the spinal cords in 12-, 18- and 24-weeks old twy/twy mice by immunohistochemical, immunoblot and flow cytometric analysis. Computed tomography and standard histology confirmed a progressive spinal cord compression through the spontaneously development of an impinging calcified mass.Results:The prevalence of CD11b-positive cells, in the compressed spinal cord increased over time with a concurrent decrease in neurons. The CD11b-positive cell population was initially formed of arginase-1- and CD206-positive M2 microglia/macrophages, which later shifted towards iNOS- and CD16/32-positive M1 microglia/macrophages. There was a transient increase in levels of T helper 2 (Th2) cytokines at 18 weeks, whereas levels of Th1 cytokines as well as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and macrophage antigen (Mac) -2 progressively increased.Conclusions:Spinal cord compression was associated with a temporal M2 microglia/macrophage response, which may act as a possible repair or neuroprotective mechanism. However, the persistence of the neural insult also associated with persistent expression of Th1 cytokines and increased prevalence of activated M1 microglia/macrophages, which may lead to neuronal loss and demyelination despite the presence of neurotrophic factors. This understanding of the aetiopathology of chronic spinal cord compression is of importance in the development of new treatment targets in human disease. © 2013 Hirai et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD8+ cytotoxic T lymphocytes (CTLs) play an important role in containment of virus replication in primary human immunodeficiency virus (HIV) infection. HIV's ability to mutate to escape from CTL pressure is increasingly recognized; but comprehensive studies of escape from the CD8 T cell response in primary HIV infection are currently lacking. Here, we have fully characterized the primary CTL response to autologous virus Env, Gag, and Tat proteins in three patients, and investigated the extent, kinetics, and mechanisms of viral escape from epitope-specific components of the response. In all three individuals, we observed variation beginning within weeks of infection at epitope-containing sites in the viral quasispecies, which conferred escape by mechanisms including altered peptide presentation/recognition and altered antigen processing. The number of epitope-containing regions exhibiting evidence of early CTL escape ranged from 1 out of 21 in a subject who controlled viral replication effectively to 5 out of 7 in a subject who did not. Evaluation of the extent and kinetics of HIV-1 escape from >40 different epitope-specific CD8 T cell responses enabled analysis of factors determining escape and suggested that escape is restricted by costs to intrinsic viral fitness and by broad, codominant distribution of CTL-mediated pressure on viral replication.