3 resultados para HUMAN COLONIC MICROBIOTA

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Identifying the cellular responses to photodynamic therapy (PDT) is important if the mechanisms of cellular damage are to be fully understood. The relationship between sensitizer, fluence rate and the removal of cells by trypsinization was studied using the RIF-1 cell line. Following treatment of RIF-1 cells with pyridinium zinc (II) phthalocyanine (PPC), or polyhaematoporphyrin at 10 mW cm−2 (3 J cm−2), there was a significant number of cells that were not removed by trypsin incubation compared to controls. Decreasing the fluence rate from 10 to 2.5 mW cm−2 resulted in a two-fold increase in the number of cells attached to the substratum when PPC used as sensitizer; however, with 5,10,15,20 meso-tetra(hydroxyphenyl) chlorin (m-THPC) there was no resistance to trypsinization following treatment at either fluence rate. The results indicate that resistance of cells to trypsinization following PDT is likely to be both sensitizer and fluence rate dependent. Increased activity of the enzyme tissue-transglutaminase (tTGase) was observed following PPC-PDT, but not following m-THPC-PDT. Similar results were obtained using HT29 human colonic carcinoma and ECV304 human umbilical vein endothelial cell lines. Hamster fibrosarcoma cell (Met B) clones transfected with human tTGase also exhibited resistance to trypsinization following PPC-mediated photosensitization; however, a similar degree of resistance was observed in PDT-treated control Met B cells suggesting that tTGase activity alone was not involved in this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Structure-activity relationships for the binding of human α-calcitonin gene-related peptide 8-37 (hαCGRP8-37) have been investigated at the CGRP receptors expressed by human SK-N-MC (neuroblastoma) and Col 29 (colonic epithelia) cells by radioligand binding assays and functional assays (hαCGRP stimulation of adenylate cyclase). 2. On SK-N-MC cells the potency order was hαCGRP8-37 > hαCGRP19-37 = AC187 > rat amylin8-37 > hα[Tyr0]-CGRP28-37 (apparent pKBS of 7.49 ± 0.25, 5.89 ± 0.20, 6.18 ± 0.19, 5.85 ± 0.19 and 5.25 ± 0.07). The SK-N-MC receptor appeared CGRP1-like. 3. On Col 29 cells, only hαCGRP8-37 of the above compounds was able to antagonize the actions of hαCGRP (apparent pKB = 6.48 ± 0.28). Its receptor appeared CGRP2-like. 4. hα[Ala11,18]-CGRP8-37, where the amphipathic nature of the N-terminal α-helix has been reduced, bound to SK-N-MC cells a 100 fold less strongly than hαCGRP8-37. 5. On SK-N-MC cells, hαCGRP(8-18, 28-37) (M433) and mastoparan-hαCGRP28-37 (M432) had apparent pKBS of 6.64 ± 0.16 and 6.42 ± 0.26, suggesting that residues 19-27 play a minor role in binding. The physico-chemical properties of residues 8-18 may be more important than any specific side-chain interactions. 6. M433 was almost as potent as hαCGRP8-37 on Col 29 cells (apparent pKB = 6.17 ± 0.20). Other antagonists were inactive.