7 resultados para HPLC-UV-MS
em Aston University Research Archive
Resumo:
Alzheimer’s disease is a neurodegenerative disorder which has been characterised with genetic (apolipoproteins), protein (ß-amyloid and tau) and lipid oxidation/metabolism alterations in its pathogenesis. In conjunction with the Dementia Research Group, Bristol University, investigation into genetic, protein and lipid oxidation in Alzheimer’s disease was conducted. A large sample cohort using the double-blind criteria, along with various clinical and chemical data sets were used to improve the statistical analysis and therefore the strength of this particular study. Bristol University completed genetic and protein analysis with lipid oxidation assays performed at Aston University. Lipid oxidation is a complex process that creates various biomarkers, from transient intermediates, to short carbon chain products and cyclic ring structures. Quantification of these products was performed on lipid extracts of donated clinical diseased and non-diseased frontal and temporal brain regions, from the Brain Bank within Frenchay Hospital. The initial unoxidised fatty acids, first transient oxidation intermediates the conjugated dienes and lipid hydroperoxides, the endpoint aldehyde biomarkers and finally the cyclic isoprostanes and neuroprostanes were determined to investigate lipid oxidation in Alzheimer’s. Antioxidant levels were also investigated to observe the effect of oxidation on the defence pathways. Assays utilised in this analysis included; fatty acid composition by GC-FID, conjugated diene levels by HPLC-UV and UV-spec, lipid hydroperoxide levels by FOX, aldehyde content by TBARs, antioxidant status by TEAC and finally isoprostane and neuroprostane quantification using a newly developed EI-MS method. This method involved the SIM of specific ions from F-ring isoprostane and neuroprostane fragmentation, which enabled EI-MS to be used for their quantification. Analyses demonstrated that there was no significant difference between control and Alzheimer samples across all the oxidation biomarkers for both brain regions. Antioxidants were the only marker that showed a clear variance; with Alzheimer samples having higher levels than the age matched controls. This unique finding is supported with the observed lower levels of lipid oxidation biomarkers in Alzheimer brain region samples. The increased antioxidant levels indicate protection against oxidation which may be a host response to counteract the oxidative pathways, but this requires further investigation. In terms of lipid oxidation, no definitive markers or target site for therapeutic intervention have been revealed. This study concludes that dietary supplementation of omega-3 fatty acids or antioxidants would most likely be ineffective against Alzheimer disease, although it may support improvement in other areas of general health.
Resumo:
Proteomics, the analysis of expressed proteins, has been an important developing area of research for the past two decades [Anderson, NG, Anderson, NL. Twenty years of two-dimensional electrophoresis: past, present and future. Electrophoresis 1996;17:443-53]. Advances in technology have led to a rapid increase in applications to a wide range of samples; from initial experiments using cell lines, more complex tissues and biological fluids are now being assessed to establish changes in protein expression. A primary aim of clinical proteomics is the identification of biomarkers for diagnosis and therapeutic intervention of disease, by comparing the proteomic profiles of control and disease, and differing physiological states. This expansion into clinical samples has not been without difficulties owing to the complexity and dynamic range in plasma and human tissues including tissue biopsies. The most widely used techniques for analysis of clinical samples are surface-enhanced laser desorption/ionisation mass spectrometry (SELDI-MS) and 2-dimensional gel electrophoresis (2-DE) coupled to matrix-assisted laser desorption ionisation [Person, MD, Monks, TJ, Lau, SS. An integrated approach to identifying chemically induced posttranslational modifications using comparative MALDI-MS and targeted HPLC-ESI-MS/MS. Chem. Res. Toxicol. 2003;16:598-608]-mass spectroscopy (MALDI-MS). This review aims to summarise the findings of studies that have used proteomic research methods to analyse samples from clinical studies and to assess the impact that proteomic techniques have had in assessing clinical samples. © 2004 The Canadian Society of Clinical Chemists. All rights reserved.
Resumo:
Objective: Development and validation of a selective and sensitive LCMS method for the determination of methotrexate polyglutamates in dried blood spots (DBS). Methods: DBS samples [spiked or patient samples] were prepared by applying blood to Guthrie cards which was then dried at room temperature. The method utilised 6-mm disks punched from the DBS samples (equivalent to approximately 12 μl of whole blood). The simple treatment procedure was based on protein precipitation using perchloric acid followed by solid phase extraction using MAX cartridges. The extracted sample was chromatographed using a reversed phase system involving an Atlantis T3-C18 column (3 μm, 2.1x150 mm) preceded by Atlantis guard column of matching chemistry. Analytes were subjected to LCMS analysis using positive electrospray ionization. Key Results: The method was linear over the range 5-400 nmol/L. The limits of detection and quantification were 1.6 and 5 nmol/L for individual polyglutamates and 1.5 and 4.5 nmol/L for total polyglutamates, respectively. The method has been applied successfully to the determination of DBS finger-prick samples from 47 paediatric patients and results confirmed with concentrations measured in matched RBC samples using conventional HPLC-UV technique. Conclusions and Clinical Relevance: The methodology has a potential for application in a range of clinical studies (e.g. pharmacokinetic evaluations or medication adherence assessment) since it is minimally invasive and easy to perform, potentially allowing parents to take blood samples at home. The feasibility of using DBS sampling can be of major value for future clinical trials or clinical care in paediatric rheumatology. © 2014 Hawwa et al.
Resumo:
Rose hips are popular in health promoting products as the fruits contain high content of bioactive compounds. The aim of this study was to investigate whether health benefits are attributable to ascorbic acid, phenols, or other rose-hip-derived compounds. Freeze-dried powder of rose hips was preextracted with metaphosphoric acid and the sample was then sequentially eluted on a C18 column. The degree of amelioration of oxidative damage was determined in an erythrocyte in vitro bioassay by comparing the effects of a reducing agent on erythrocytes alone or on erythrocytes pretreated with berry extracts. The maximum protection against oxidative stress, 59.4 ± 4.0% (mean standard deviation), was achieved when incubating the cells with the first eluted meta-phosphoric extract. Removal of ascorbic acid from this extract increased the protection against oxidative stress to 67.9 ± 1.9% . The protection from the 20% and 100% methanol extracts was 20.8 ± 8.2% and 5.0 ± 3.2% , respectively. Antioxidant uptake was confirmed by measurement of catechin by HPLC-ESI-MS in the 20% methanol extract. The fact that all sequentially eluted extracts studied contributed to protective effects on the erythrocytes indicates that rose hips contain a promising level of clinically relevant antioxidant protection. © Copyright 2012 C. Widén et al.
Resumo:
Measurement of lipid peroxidation is a commonly used method of detecting oxidative damage to biological tissues, but the most frequently used methods, including MS, measure breakdown products and are therefore indirect. We have coupled reversed-phase HPLC with positive-ionization electrospray MS (LC-MS) to provide a method for separating and detecting intact oxidized phospholipids in oxidatively stressed mammalian cells without extensive sample preparation. The elution profile of phospholipid hydroperoxides and chlorohydrins was first characterized using individual phospholipids or a defined phospholipid mixture as a model system. The facility of detection of the oxidized species in complex mixtures was greatly improved compared with direct-injection MS analysis, as they eluted earlier than the native lipids, owing to the decrease in hydrophobicity. In U937 and HL60 cells treated in vitro with t-butylhydroperoxide plus Fe2+, lipid oxidation could not be observed by direct injection, but LC-MS allowed the detection of monohydroperoxides of palmitoyl-linoleoyl and stearoyl-linoleoyl phosphatidylcholines. The levels of hydroperoxides observed in U937 cells were found to depend on the duration and severity of the oxidative stress. In cells treated with HOCl, chlorohydrins of palmitoyloleoyl phosphatidylcholine were observed by LC-MS. The method was able to detect very small amounts of oxidized lipids compared with the levels of native lipids present. The membrane-lipid profiles of these cells were found to be quite resistant to damage until high concentrations of oxidants were used. This is the first report of direct detection by LC-MS of intact oxidized phospholipids induced in cultured cells subjected to oxidative stress.
Resumo:
The application of an antiserum to ultraviolet radiation (UVR)-damaged DNA is presented. A novel experimental system was employed to ascertain the limits of detection for this antiserum. Using a DNA standard containing a known amount of dimer, the limits of detection were found to be 0.9 fmol of dimer. This was compared to a limit of 20-50 fmol dimer using gas chromatography-mass spectrometry (GC-MS). Induction of thymine dimers in DNA following UVR exposure, as assessed using this antiserum in an enzyme-linked immunosorbent assay (ELISA), was compared with GC-MS measurements. The ELISA method successfully demonstrated the induction of lesions in DNA irradiated either with UVC or UVB, although despite high sensitivity, no discernible binding was seen to UVA-irradiated DNA. The antiserum was also shown to be applicable to immunocytochemistry, localising damage in the nuclei of UVR exposed keratinocytes in culture. The ability of the antiserum to detect DNA damage in skin biopsies of individuals exposed to sub-erythemal doses of UVR was also demonstrated. Moreover, the subsequent removal of this damage, as evidenced by a reduction in antiserum staining, was noted in sections of biopsies taken in the hours following irradiation. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Phagocytic cells produce a variety of oxidants as part of the immune defence, which react readily both with proteins and lipids, and could contribute to the oxidation of low density lipoprotein in atherosclerosis. We have investigated the oxidation of phospholipid vesicles by isolated human polymorphonuclear and mononuclear leukocytes, to provide a model of lipid oxidation in the absence of competing protein. PMA-stimulated cells were incubated with phospholipid vesicles contammg dipalmitoyl phosphatidylcholine (DPPC), palmitoyl-arachidonoyl phosphatidylcholine (PAPC), and stearoyl-oleoyl phosphatidylcholine (SOPC), before extraction of the lipids for analysis by HPLC coupled to electrospray mass spectrometry. In this system, oxidized phosphatidylcholines elute earlier than the native lipids owing to their decreased hydrophobicity, and can be identified according to their molecular mass. The formation of monohydroperoxides of P APC was observed routinely, together with low levels of hydroxides, but no chlorohydrin derivatives of P APC or SOPC were detected. However, the major oxidized product occurred at 828 m/z, and was identified as I-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-3-phosphocholine. These results show that phagocytes triggered by PMA cause oxidative damage to lipids predominantly by free radical mechanisms, and that electrophilic addition involving HOCl is not a major mechanism of attack. The contribution of myeloperoxidase and metal ions to the oxidation process is currently being investigated, and preliminary data suggest that myeloperoxidase-derived oxidants are responsible for the epoxyisoprostane phospholipid formation. The identification of an epoxyisoprostane phospholipid as the major product following phagocyte-induced phospholipid oxidation is novel and has implications for phagocyte involvement in atherogenesis.