4 resultados para HOLMIUM

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We combine all the known experimental demonstrations and spectroscopic parameters into a numerical model of the Ho3+ -doped fluoride glass fiber laser system. Core-pumped and cladding-pumped arrangements were simulated for all the population-bottlenecking mitigation schemes that have been tested, and good agreement between the model and the previously reported experimental results was achieved in most but not in all cases. In a similar way to Er3+ -doped fluoride glass fiber lasers, we found that the best match with measurements required scaled-down rate parameters for the energy transfer processes that operate in moderate to highly concentrated systems. The model isolated the dominant processes affecting the performance of each of the bottlenecking mitigation schemes and pump arrangements. It was established that pump excited-state absorption is the main factor affecting the performance of the core-pumped demonstrations of the laser, while energy transfer between rare earth ions is the main factor controlling the performance in cladding-pumped systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative distribution of rare-earth ions R3+ (Dy3+ or Ho3+) in the phosphate glass RAl0.30P3.05O9.62 was measured by employing the method of isomorphic substitution in neutron diffraction and, by taking the role of Al into explicit account, a self-consistent model of the glass structure was developed. The glass network is found to be made from corner sharing PO4 tetrahedra in which there are, on average, 2.32(9) terminal oxygen atoms, OT, at 1.50(1) Å and 1.68(9) bridging oxygen atoms, OB, at 1.60(1) Å. The network modifying R3+ ions bind to an average of 6.7(1) OT and are distributed such that 7.9(7) R–R nearest neighbours reside at 5.62(6) Å. The Al3+ ion also has a network modifying role in which it helps to strengthen the glass through the formation of OT–Al–OT linkages. The connectivity of the R-centred coordination polyhedra in (M2O3)x(P2O5)1−x glasses, where M3+ denotes a network modifying cation (R3+ or Al3+), is quantified in terms of a parameter fs. Methods for reducing the clustering of rare-earth ions in these materials are then discussed, based on a reduction of fs via the replacement of R3+ by Al3+ at fixed total modifier content or via a change of x to increase the number of OT available per network modifying M3+ cation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical modeling of cascade erbium-doped and holmium-doped fluoride fiber lasers is presented. Fiber lengths were optimized for cascade lasers that had fixed or free-running wavelengths using all known spectroscopic parameters. The performance of the cascade laser was tested against dopant concentration, energy transfer process, heat generation, output coupling, and pump schemes. The results suggest that the slope efficiencies and thresholds for both transitions increase with increasing Ho3+ or Er3+ concentration with the slope efficiency stabilizing after 1 mol% rare earth doping. The heat generation in the Ho3+-based system is lower compared to the Er 3+-based system at low dopant concentration as a result of the lower rates of multiphonon relaxation. Decreasing the output coupling for the upper (∼3 μm) transition decreases the threshold of the lower transition and the upper transition benefits from decreasing the output coupling for the lower transition for both cascade systems. The highest slope efficiency was achieved under counter-propagating pump conditions. Saturation of the output power occurs at comparatively higher pump power with dilute Er3+ doping compared with heavier doping. Overall, we show that the cascade Ho3+ -doped fluoride laser is the best candidate for high power output because of its higher slope efficiency and lower temperature excursion of the core and no saturation of the output. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) possess both remarkable optical properties and high potential for integration in various photonic devices. We overview, here, recent progress in CNT applications in fibre optics putting particular emphasis on fibre lasers. We discuss fabrication and characterisation of different CNTs, development of CNT-based saturable absorbers (CNT-SA), their integration and operation in fibre laser cavities putting emphasis on state-of-the-art fibre lasers, mode locked using CNT-SA. We discuss new design concepts of high-performance ultrafast operation fibre lasers covering ytterbium (Yb), bismuth (Bi), erbium (Er), thulium (Tm) and holmium (Ho)-doped fibre lasers.