2 resultados para HINDLIMB LAMENESS
em Aston University Research Archive
Resumo:
S-glutathionylation occurs when reactive oxygen or nitrogen species react with protein-cysteine thiols. Glutaredoxin-1 (Glrx) is a cytosolic enzyme which enzymatically catalyses the reduction in S-glutathionylation, conferring reversible signalling function to proteins with redox-sensitive thiols. Glrx can regulate vascular hypertrophy and inflammation by regulating the activity of nuclear factor κB (NF-κB) and actin polymerization. Vascular endothelial growth factor (VEGF)-induced endothelial cell (EC) migration is inhibited by Glrx overexpression. In mice overexpressing Glrx, blood flow recovery, exercise function and capillary density were significantly attenuated after hindlimb ischaemia (HLI). Wnt5a and soluble Fms-like tyrosine kinase-1 (sFlt-1) were enhanced in the ischaemic-limb muscle and plasma respectively from Glrx transgenic (TG) mice. A Wnt5a/sFlt-1 pathway had been described in myeloid cells controlling retinal blood vessel development. Interestingly, a Wnt5a/sFlt-1 pathway was found also to play a role in EC to inhibit network formation. S-glutathionylation of NF-κB components inhibits its activation. Up-regulated Glrx stimulated the Wnt5a/sFlt-1 pathway through enhancing NF-κB signalling. These studies show a novel role for Glrx in post-ischaemic neovascularization, which could define a potential target for therapy of impaired angiogenesis in pathological conditions including diabetes.
Resumo:
The endothelium produces and responds to reactive oxygen and nitrogen species (RONS), providing important redox regulation to the cardiovascular system in physiology and disease. In no other situation are RONS more critical than in the response to tissue ischemia. Here, tissue healing requires growth factor-mediated angiogenesis that is in part dependent on low levels of RONS, which paradoxically must overcome the damaging effects of high levels of RONS generated as a result of ischemia. While generation of endothelial cell RONS in hypoxia/reoxygenation is acknowledged, the mechanism for their role in angiogenesis is still poorly understood. During ischemia, the major low molecular weight thiol glutathione (GSH) reacts with RONS and protein cysteines, producing GSH-protein adducts. Recent data indicate that GSH adducts on certain proteins are essential to growth factor responses in endothelial cells. Genetic deletion of the enzyme glutaredoxin-1, which selectively removes GSH protein adducts, improves, while its overexpression impairs, revascularization of the ischemic hindlimb of mice. Ischemia-induced GSH adducts on specific cysteine residues of several proteins, including p65 NFkB and the sarcoplasmic reticulum calcium ATPase-2 (SERCA2), appear to promote ischemic angiogenesis. Identifying the specific proteins in the redox response to ischemia has provided therapeutic opportunities to improve clinical outcomes of ischemia.