10 resultados para HIGH-PRESSURES
em Aston University Research Archive
Resumo:
A study was made of the effect of blending practice upon selected physical properties of crude oils, and of various base oils and petroleum products, using a range of binary mixtures. The crudes comprised light, medium and heavy Kuwait crude oils. The properties included kinematic viscosity, pour point, boiling point and Reid vapour pressure. The literature related to the prediction of these properties, and the changes reported to occur on blending, was critically reviewed as a preliminary to the study. The kinematic viscosity of petroleum oils in general exhibited non-ideal behaviour upon blending. A mechanism was proposed for this behaviour which took into account the effect of asphaltenes content. A correlation was developed, as a modification of Grunberg's equation, to predict the viscosities of binary mixtures of petroleum oils. A correlation was also developed to predict the viscosities of ternary mixtures. This correlation showed better agreement with experimental data (< 6% deviation for crude oils and 2.0% for base oils) than currently-used methods, i.e. ASTM and Refutas methods. An investigation was made of the effect of temperature on the viscosities of crude oils and petroleum products at atmospheric pressure. The effect of pressure on the viscosity of crude oil was also studied. A correlation was developed to predict the viscosity at high pressures (up to 8000 psi), which gave significantly better agreement with the experimental data than the current method due to Kouzel (5.2% and 6.0% deviation for the binary and ternary mixtures respectively). Eyring's theory of viscous flow was critically investigated, and a modification was proposed which extends its application to petroleum oils. The effect of blending on the pour points of selected petroleum oils was studied together with the effect of wax formation and asphaltenes content. Depression of the pour point was always obtained with crude oil binary mixtures. A mechanism was proposed to explain the pour point behaviour of the different binary mixtures. The effects of blending on the boiling point ranges and Reid vapour pressures of binary mixtures of petroleum oils were investigated. The boiling point range exhibited ideal behaviour but the R.V.P. showed negative deviations from it in all cases. Molecular weights of these mixtures were ideal, but the densities and molar volumes were not. The stability of the various crude oil binary mixtures, in terms of viscosity, was studied over a temperature range of 1oC - 30oC for up to 12 weeks. Good stability was found in most cases.
Resumo:
Gas absorption, the removal of one or more constitutents from a gas mixture, is widely used in chemical processes. In many gas absorption processes, the gas mixture is already at high pressure and in recent years organic solvents have been developed for the process of physical absorption at high pressure followed by low pressure regeneration of the solvent and recovery of the absorbed gases. Until now the discovery of new solvents has usually been by expensive and time consuming trial and error laboratory tests. This work describes a new approach, whereby a solvent is selected from considerations of its molecular structure by applying recently published methods of predicting gas solubility from the molecular groups which make up the solvent molecule. The removal of the acid gases of carbon dioxide and hydrogen sulfide from methane or hydrogen was used as a commercially important example. After a preliminary assessment to identify promising moecular groups, more than eighty new solvent molecules were designed and evaluated by predicting gas solubility. The other important physical properties were also predicted by appropriate theoretical procedures, and a commercially promising new solvent was chosen to have a high solubility for acid gases, a low solubility for methane and hydrogen, a low vapour pressure, and a low viscosity. The solvent chosen, of molecular structure Ch3-COCH2-CH2-CO-CH3, was tested in the laboratory and shown to have physical properties, except for vapour pressures, close to those predicted. That is gas solubilities were within 10% but lower than predicted. Viscosity within 10% but higher than predicted and a vapour pressure significantly lower than predicted. A computer program was written to predict gas solubility in the new solvent at the high pressures (25 bar) used in practice. This is based on the group contribution method of Skold Jorgensen (1984). Before using this with the new solvent, Acetonyl acetone, the method was show to be sufficiently accurate by comparing predicted values of gas solubility with experimental solubilities from the literature for 14 systems up to 50 bar. A test of the commercial potential of the new solvent was made by means of two design studies which compared the size of plant and approximate relative costs of absorbing acid gases by means of the new solvent with other commonly used solvents. These were refrigerated methanol(Rectisol process) and Dimethyl Ether or Polyethylene Glycol(Selexol process). Both studies showed in terms of capital and operating cost some significant advantage for plant designed for the new solvent process.
Resumo:
Although well known for delivering various pharmaceutical agents, liposomes can be prepared to entrap gas rather than aqueous media and have the potential to be used as pressure probes in magnetic resonance imaging (MRI). Using these gas-filled liposomes (GFL) as tracers, MRI imaging of pressure regions of a fluid flowing through a porous medium could be established. This knowledge can be exploited to enhance recovery of oil from the porous rock regions within oil fields. In the preliminary studies, we have optimized the lipid composition of GFL prepared using a simple homogenization technique and investigated key physico-chemical characteristics (size and the physical stability) and their efficacy as pressure probes. In contrast to the liposomes possessing an aqueous core which are prepared at temperatures above their phase transition temperature (Tc), homogenization of the phospholipids such as 1,2-dipalmitoyl-sn-glycero-3- phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocoline (DSPC) in aqueous medium below their Tc was found to be crucial in formation of stable GFL. DSPC based preparations yielded a GFL volume of more than five times compared to their DPPC counter part. Although the initial vesicle sizes of both DSPC and DPPC based GFL were about 10 μm, after 7 days storage at 25°C, the vesicle sizes of both formulations significantly (p < 0.05) increased to 28.3 ± 0.3 μm and 12.3 ± 1.0 μm, respectively. When the DPPC preparation was supplemented with cholesterol at a 1:0.5 or 1:1 molar ratio, significantly (p < 0.05) larger vesicles were formed (12-13 μm), however, compared to DPPC only vesicles, both cholesterol supplemented formulations displayed enhanced stability on storage indicating a stabilizing effect of cholesterol on these gas-filled vesicles. In order to induce surface charge on the GFL, DPPC and cholesterol (1: 0.5 molar ratio) liposomes were supplemented with a cationic surfactant, stearylamine, at a molar ratio of 0.25 or 0.125. Interestingly, the ζ potential values remained around neutrality at both stearylamine ratios suggesting the cationic surfactant was not incorporated within the bilayers of the GFL. Microscopic analysis of GFL confirmed the presence of spherical structures with a size distribution between 1-8 μm. This study has identified that DSPC based GFL in aqueous medium dispersed in 2% w/v methyl cellulose although yielded higher vesicle sizes over time were most stable under high pressures exerted in MRI. Copyright © Informa Healthcare USA, Inc.
Resumo:
It is shown that chlorosulphonation is a major aid to the electron microscopy of polyethylene for various samples which had mostly been crystallized at high pressures and included at least a proportion of the so-called chain-extended form. It is confirmed that sheets of excess electron density are produced at lamellar surfaces, but also including lateral surfaces. This is due primarily to the incorporation of chlorine and sulphur rather than to added uranium. The time to achieve an overall reaction varies sensitively with morphology, decreasing as the number of diffusion channels increases. Crystallinity is gradually lost, but sufficient crystals remain when a sample has become uniform, and in their initial orientations, for diffraction studies to be possible. The technique has been used to demonstrate that, during melt crystallization, the thickness of one lamella changes in response to altered growth conditions. This is direct confirmation that lamellar thickness is determined by secondary nucleation at the growth front. The tapered profile of a growing lamella previously observed in thick crystals of various polymers has been observed for chain-folded polyethylene lamellae, providing further evidence that this is a general feature of melt growth. © 1977 Chapman and Hall Ltd.
Resumo:
Pt catalyst series were prepared on mesoporous SBA-15, SBA-16, KIT-6, true liquidcrystal-templated meso-macroporous SBA-15 and a commercial, low surface area silicasupport. Support structure can be easily fabricated using surfactant templating as a mode ofstringent control on porosity, surface area and internal structure. The impact of varying Pt-support physicochemical properties was systematically studied for the selective transformation of allylic substrates under chemoselective oxidation and hydrogenation regimes, a class of reactions highly applicable to industry. Pt-based heterogeneous catalysts are well-known for their utilisation in the hydrogenation of α,β-unsaturated aldehydes,although the mode of action and lack of systematic studies in the literature fuels continuing debate into the role of Pt nanoparticles and support choice for this area. This project attempts to shed some light on several frequently asked questions in this field. Successful support synthesis and stability after Pt impregnation is confirmed through HRTEM, XRD and N2 porosimetry. Decreasing metal loading promoted dispersion values,regardless of support choice, with surface PtO2 content also showing visible enhancement.Increasing support surface area and mesoporosity exhibited the following trend on Pt dispersion augmentation; low surface area commercial silica < true liquid crystal-templated SBA-15 < SBA-15 < SBA-16 ~ KIT-6. For the selective oxidation of cinnamyl alcohol,increasing PtO2 surface population confers substantial rate enhancements, with turnover frequencies evidencing PtO2 to be the active species .In the Pt-catalysed hydrogenation of cinnamaldehyde, strong support insensitivity was observed towards catalytic activity; as turnover frequencies normalised to Pt metal reveal constant values. However, structure sensitivity to the desired unsaturated alcohol arose,evidencing the requirement of flat, extended Pt (111) facets for C=O hydrogenation. Pt/SBA-15 proved the most selective, reflecting suppressed cinnamyl alcohol hydrogenation, with DRIFTS and in-situ ATR-IR evidencing the key role of support polarity in re-orientation of cinnamaldehyde to favour di-σCO adsorption and C=O versus C=C hydrogenation. High pressures increased activity, whilst a dramatic shift in selectivity from dominant C=C (1 bar)to C=O hydrogenation (10 bar) was also observed, attributed to surface crowding and suppression of di-σCC and η4 di-σCO+πC=C cinnamaldehyde binding modes.
Resumo:
A study of vapour-liquid equilibria is presented together with current developments. The theory of vapour-liquid equilibria is discussed. Both experimental and prediction methods for obtaining vapour-liquid equilibria data are critically reviewed. The development of a new family of equilibrium stills to measure experimental VLE data from sub-atmosphere to 35 bar pressure is described. Existing experimental techniques are reviewed, to highlight the needs for these new apparati and their major attributes. Details are provided of how apparatus may be further improved and how computer control may be implemented. To provide a rigorous test of the apparatus the stills have been commissioned using acetic acid-water mixture at one atmosphere pressure. A Barker-type consistency test computer program, which allows for association in both phases has been applied to the data generated and clearly shows that the stills produce data of a very high quality. Two high quality data sets, for the mixture acetone-chloroform, have been generated at one atmosphere and 64.3oC. These data are used to investigate the ability of the new novel technique, based on molecular parameters, to predict VLE data for highly polar mixtures. Eight, vapour-liquid equilibrium data sets have been produced for the cyclohexane-ethanol mixture at one atmosphere, 2, 4, 6, 8 and 11 bar, 90.9oC and 132.8oC. These data sets have been tested for thermodynamic consistency using a Barker-type fitting package and shown to be of high quality. The data have been used to investigate the dependence of UNIQUAC parameters with temperature. The data have in addition been used to compare directly the performance of the predictive methods - Original UNIFAC, a modified version of UNIFAC, and the new novel technique, based on molecular parameters developed from generalised London's potential (GLP) theory.
Resumo:
An ultra high vacuum system capable of attaining pressures of 10-12 mm Hg was used for thermal desorption experiments. The metal chosen for these experiments was tantalum because of its suitability for thermal desorption experiments and because relatively little work has been done using this metal. The gases investigated were carbon monoxide, hydrogen and ethylene. The kinetic and thermodynamic parameters relating to the desorption reaction were calculated and the values obtained related to the reaction on the surface. The thermal desorption reaction was not capable of supplying all the information necessary to form a complete picture of the desorption reaction. Further information was obtained by using a quadrupole mass spectrometer to analyse the desorbed species. The identification of the desorbed species combined with the value of the desorption parameters meant that possible adatom structures could be postulated. A combination of these two techniques proved to be a very powerful tool when investigating gas-metal surface reactions and gave realistic values for the measured parameters such as the surface coverage, order of reaction, the activation energy and pre-exponential function for desorption. Electron microscopy and X-ray diffraction were also used to investigate the effect of the gases on the metal surface.
Resumo:
Ultrathin alumina monolayers grafted onto an ordered mesoporous SBA-15 silica framework afford a composite catalyst support with unique structural properties and surface chemistry. Palladium nanoparticles deposited onto Al-SBA-15 via wet impregnation exhibit the high dispersion and surface oxidation characteristic of pure aluminas, in conjunction with the high active site densities characteristic of thermally stable, high-area mesoporous silicas. This combination confers significant rate enhancements in the aerobic selective oxidation (selox) of cinnamyl alcohol over Pd/Al-SBA-15 compared to mesoporous alumina or silica supports. Operando, liquid-phase XAS highlights the interplay between dissolved oxygen and the oxidation state of palladium nanoparticles dispersed over Al-SBA-15 towards on-stream reduction: ambient pressures of flowing oxygen are sufficient to hinder palladium oxide reduction to metal, enabling a high selox activity to be maintained, whereas rapid PdO reduction and concomitant catalyst deactivation occurs under static oxygen. Selectivity to the desired cinnamaldehyde product mirrors these trends in activity, with flowing oxygen minimising CO cleavage of the cinnamyl alcohol reactant to trans-β-methylstyrene, and of cinnamaldehyde decarbonylation to styrene. © 2013 Elsevier B.V.
Resumo:
Liquid-level sensing technologies have attracted great prominence, because such measurements are essential to industrial applications, such as fuel storage, flood warning and in the biochemical industry. Traditional liquid level sensors are based on electromechanical techniques; however they suffer from intrinsic safety concerns in explosive environments. In recent years, given that optical fiber sensors have lots of well-established advantages such as high accuracy, costeffectiveness, compact size, and ease of multiplexing, several optical fiber liquid level sensors have been investigated which are based on different operating principles such as side-polishing the cladding and a portion of core, using a spiral side-emitting optical fiber or using silica fiber gratings. The present work proposes a novel and highly sensitive liquid level sensor making use of polymer optical fiber Bragg gratings (POFBGs). The key elements of the system are a set of POFBGs embedded in silicone rubber diaphragms. This is a new development building on the idea of determining liquid level by measuring the pressure at the bottom of a liquid container, however it has a number of critical advantages. The system features several FBG-based pressure sensors as described above placed at different depths. Any sensor above the surface of the liquid will read the same ambient pressure. Sensors below the surface of the liquid will read pressures that increase linearly with depth. The position of the liquid surface can therefore be approximately identified as lying between the first sensor to read an above-ambient pressure and the next higher sensor. This level of precision would not in general be sufficient for most liquid level monitoring applications; however a much more precise determination of liquid level can be made by linear regression to the pressure readings from the sub-surface sensors. There are numerous advantages to this multi-sensor approach. First, the use of linear regression using multiple sensors is inherently more accurate than using a single pressure reading to estimate depth. Second, common mode temperature induced wavelength shifts in the individual sensors are automatically compensated. Thirdly, temperature induced changes in the sensor pressure sensitivity are also compensated. Fourthly, the approach provides the possibility to detect and compensate for malfunctioning sensors. Finally, the system is immune to changes in the density of the monitored fluid and even to changes in the effective force of gravity, as might be obtained in an aerospace application. The performance of an individual sensor was characterized and displays a sensitivity (54 pm/cm), enhanced by more than a factor of 2 when compared to a sensor head configuration based on a silica FBG published in the literature, resulting from the much lower elastic modulus of POF. Furthermore, the temperature/humidity behavior and measurement resolution were also studied in detail. The proposed configuration also displays a highly linear response, high resolution and good repeatability. The results suggest the new configuration can be a useful tool in many different applications, such as aircraft fuel monitoring, and biochemical and environmental sensing, where accuracy and stability are fundamental. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
High street optometric practices are for-profit businesses. They mostly provide sight testing and eye examination services and sell optical products, such as spectacles and contact lenses. The sight testing services are often sold at a vastly reduced price and profits are generated primarily through high margin spectacle sales, in a loss leading strategy. Published literature highlights weaknesses in this strategy as it forms a barrier to widening the scope of services provided within optometric practices. This includes specialist non-refraction based services, such as shared care. In addition this business strategy discourages investment in advanced diagnostic equipment and higher professional qualifications. The aim of this thesis was to develop a greater understanding of the traditional loss-leading strategy. The thesis also aimed to assess the plausibility of alternative business models to support the development of specialist non-refraction services within high street optometric practice. This research was based on a single independent optometric practice that specialises in advanced retinal imaging and offers a broad range of shared care services. Specialist non-refraction based services were found to be poor generators of spectacle sales likely due to patient needs and presenting concerns. Alternative business strategies to support these services included charging more realistic professional fees via cost-based pricing and monthly payment plans. These strategies enabled specialist services to be more self-sustainable with less reliance on cross-subsidy from spectacle sales. Furthermore, improving operational efficiency can increase stand-alone profits for specialist services.Practice managers may be reluctant to increase professional fees due to market pressures and confidence. However, this thesis found that patients were accepting of increased professional fees. Practice managers can implement alternative business models to enhance eye care provision in high street optometric practices. These alternative business models also improve revenues and profits generated via clinical services and improve patient loyalty.