12 resultados para HELICES

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The VPAC(1) receptor belongs to family B of G protein-coupled receptors (GPCR-B) and is activated upon binding of the vasoactive intestinal peptide (VIP). Despite the recent determination of the structure of the N terminus of several members of this receptor family, little is known about the structure of the transmembrane (TM) region and about the molecular mechanisms leading to activation. In the present study, we designed a new structural model of the TM domain and combined it with experimental mutagenesis experiments to investigate the interaction network that governs ligand binding and receptor activation. Our results suggest that this network involves the cluster of residues Arg(188) in TM2, Gln(380) in TM7, and Asn(229) in TM3. This cluster is expected to be altered upon VIP binding, because Arg(188) has been shown previously to interact with Asp(3) of VIP. Several point mutations at positions 188, 229, and 380 were experimentally characterized and were shown to severely affect VIP binding and/or VIP-mediated cAMP production. Double mutants built from reciprocal residue exchanges exhibit strong cooperative or anticooperative effects, thereby indicating the spatial proximity of residues Arg(188), Gln(380), and Asn(229). Because these residues are highly conserved in the GPCR-B family, they can moreover be expected to have a general role in mediating function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Receptor activity modifying proteins (RAMPs) are a family of single-pass transmembrane proteins that dimerize with G-protein-coupled receptors. They may alter the ligand recognition properties of the receptors (particularly for the calcitonin receptor-like receptor, CLR). Very little structural information is available about RAMPs. Here, an ab initio model has been generated for the extracellular domain of RAMP1. The disulfide bond arrangement (Cys 27-Cys82, Cys40-Cys72, and Cys 57-Cys104) was determined by site-directed mutagenesis. The secondary structure (a-helices from residues 29-51, 60-80, and 87-100) was established from a consensus of predictive routines. Using these constraints, an assemblage of 25,000 structures was constructed and these were ranked using an all-atom statistical potential. The best 1000 conformations were energy minimized. The lowest scoring model was refined by molecular dynamics simulation. To validate our strategy, the same methods were applied to three proteins of known structure; PDB:1HP8, PDB:1V54 chain H (residues 21-85), and PDB:1T0P. When compared to the crystal structures, the models had root mean-square deviations of 3.8 Å, 4.1 Å, and 4.0 Å, respectively. The model of RAMP1 suggested that Phe93, Tyr 100, and Phe101 form a binding interface for CLR, whereas Trp74 and Phe92 may interact with ligands that bind to the CLR/RAMP1 heterodimer. © 2006 by the Biophysical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcitonin receptor like-receptor is a family B G-protein coupled receptor (GPCR). It requires receptor activity modifying protein (RAMP) 1 to give a calcitonin gene-related peptide (CGRP) receptor. Little is known of how members of this receptor family function. Proline residues often form important kinks in alpha-helices. Therefore, all proline residues within the transmembrane helices of the receptor (Pro241, Pro244 in helix 4, Pro275 in helix 5, Pro321 and Pro331 in helix 6) were mutated to alanine. Pro241 Pro275, and Pro321 are highly conserved throughout all family B GPCRs. The binding of CGRP and its ability to stimulate cAMP production were investigated in mutant and wild-type receptors after transient transfection into COS-7 cells with RAMP1. The P321A mutation significantly decreased the pEC(50) for CGRP and reduced its affinity but did not change cell-surface expression. Antagonist binding [CGRP(8-37) and 1-piperidinecarboxamide N-[2-[[5amino-1-[[4-(4-pyridinyl)-1-piperazinyl]carbonyl]pentyl]amino]-1-[(3 5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quina zolinyl) (BIBN4096BS)] was little altered by the mutation. Adrenomedullin-mediated signaling was disrupted when P321A was coexpressed with RAMP1, RAMP2, or RAMP3. The P331A mutant produced a moderate reduction in CGRP binding and receptor activation. Mutation of the other residues had no effect on receptor function. Thus, Pro321 and Pro331 are required for agonist binding and receptor activation. Modeling suggested that Pro321 induces a bend in helix 6, bringing its C terminus near that of helix 3, as seen in many family A GPCRs. This is abolished in P321A. P321A-I325P predicted to restore this conformation, showed wild-type activation. Modeling can also rationalize the effects of transmembrane proline mutants previously reported for another family B GPCR, the VPAC(1) receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proton pumping nicotinamide nucleotide transhydrogenase from Escherichia coli contains an α subunit with the NAD(H)-binding domain I and a β subunit with the NADP(H)-binding domain III. The membrane domain (domain II) harbors the proton channel and is made up of the hydrophobic parts of the α and β subunits. The interface in domain II between the α and the β subunits has previously been investigated by cross-linking loops connecting the four transmembrane helices in the α subunit and loops connecting the nine transmembrane helices in the β subunit. However, to investigate the organization of the nine transmembrane helices in the β subunit, a split was introduced by creating a stop codon in the loop connecting transmembrane helices 9 and 10 by a single mutagenesis step, utilizing an existing downstream start codon. The resulting enzyme was composed of the wild-type α subunit and the two new peptides β1 and β2. As compared to other split membrane proteins, the new transhydrogenase was remarkably active and catalyzed activities for the reduction of 3-acetylpyridine-NAD + by NADPH, the cyclic reduction of 3-acetylpyridine-NAD + by NADH (mediated by bound NADP(H)), and proton pumping, amounting to about 50-107% of the corresponding wild-type activities. These high activities suggest that the α subunit was normally folded, followed by a concerted folding of β1 + β2. Cross-linking of a βS105C-βS237C double cysteine mutant in the functional split cysteine-free background, followed by SDS-PAGE analysis, showed that helices 9, 13, and 14 were in close proximity. This is the first time that cross-linking between helices in the same β subunit has been demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Receptor activity modifying protein 1 (RAMP1) is an integral component of several receptors including the calcitonin gene-related peptide (CGRP) receptor. It forms a complex with the calcitonin receptor-like receptor (CLR) and is required for receptor trafficking and ligand binding. The N-terminus of RAMP1 comprises three helices. The current study investigated regions of RAMP1 important for CGRP or CLR interactions by alanine mutagenesis. Modeling suggested the second and third helices were important in protein-protein interactions. Most of the conserved residues in the N-terminus (M48, W56, Y66, P85, N66, H97, F101, D113, P114, P115), together with a further 13 residues spread throughout three helices of RAMP1, were mutated to alanine and coexpressed with CLR in Cos 7 cells. None of the mutations significantly reduced RAMP expression. Of the nine mutants from helix 1, only M48A had any effect, producing a modest reduction in trafficking of CLR to the cell surface. In helix 2 Y66A almost completely abolished CLR trafficking; L69A and T73A reduced the potency of CGRP to produce cAMP. In helix 3, H97A abolished CLR trafficking; P85A, N86A, and F101A had caused modest reductions in CLR trafficking and also reduced the potency of CGRP on cAMP production. F93A caused a modest reduction in CLR trafficking alone and L94A increased cAMP production. The data are consistent with a CLR recognition site particularly involving Y66 and H97, with lesser roles for adjacent residues in helix 3. L69 and T73 may contribute to a CGRP recognition site in helix 2 also involving nearby residues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of receptor activity modifying protein 1 (RAMP1) in forming receptors with the calcitonin receptor-like receptor (CLR) and the calcitonin receptor (CTR) was examined by producing chimeras between RAMP1 and RAMP3. RAMPs have three extracellular helices. Exchange of helix 1 of the RAMPs or residues 62-69 in helix 2 greatly reduced CLR trafficking (a marker for CLR association). Modeling suggests that these exchanges alter the CLR recognition site on RAMP1, which is more exposed than on RAMP3. Exchange of residues 86-89 of RAMP1 had no effect on the trafficking of CLR but reduced the potency of human (h) alphaCGRP and adrenomedullin. However, these alterations to RAMP1 had no effect on the potency of hbetaCGRP. These residues of RAMP1 lie at the junction of helix 3 and its connecting loop with helix 2. Modeling suggests that the loop is more exposed in RAMP1 than RAMP3; it may play an important role in peptide binding, either directly or indirectly. Exchange of residues 90-94 of RAMP1 caused a modest reduction in CLR expression and a 15-fold decrease in CGRP potency. It is unlikely that the decrease in expression is enough to explain the reduction in potency, and so these may have dual roles in recognizing CLR and CGRP. For CTR, only 6 out of 26 chimeras covering the extracellular part of RAMP1 did not reduce agonist potency. Thus the association of CTR with RAMP1 seems more sensitive to changes in RAMP1 structure induced by the chimeras than is CLR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

N-vinylcarbazole was polymerised using the free radical catalyst (azo-bisisobutyronitrile) and cationic catalysts (boron-trifluoride etherate and aluminium chloride). The polymers produced were characterised by molecular weight measurements and powder x-ray diffraction. The tacticity of the polymer samples was determined using proton and carbon-13 nuclear magnetic resonance spectroscopy. Measurements of their static dielectric permittivity and electro-optical birefringence (Kerr effect) in solution in 1,4-dioxane were carried out over a range of temperatures. The magnitudes of the dipole moments and Kerr constants were found to vary with changes in the tacticity of poly(N-vinylcarbazole). The results of these measurements support the view that the stereostructure of poly(N-vinylcarbazole) is sensitive to the mechanism of polymerisation. These results, together with proton and carbon-13 N.M.R. data, are discussed in terms of the possible conformations of the polymer chains and the relative orientation of the bulky carbazole side groups. The dielectric and molecular Kerr effect studies have also been carried out on complexes formed between 2,4,7-trinitro-9-fluorenone (TNF) and different stereoregular forms of poly(N-vinylcarbazole) in solution in 1,4-dioxane. The differences in the molar Kerr constants between pure (uncomplexed) and complexed poly(N-vinylcarbazole) samples were attributed to changes in optical anisotropy and dipole moments. A molecular modelling computer program Desktop Molecular Modeller was used to examine the 3/1 helical isotactic and 2/1 helical syndiotactic forms of poly(N-vinylcarbazole). These models were used to calculate the pitch distances of helices and the results were interpreted in terms of van der Waal's radii on TNF. This study indicated that the pitch distance in 3/1 isotactic helices was large enough to accommodate the bulky TNF molecules to form sandwich type charge transfer complexes whereas the pitch distance in syndiotactic poly(N-vinylcarbazole) was smaller and would not allow a similar type of complex formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Covalent attachment of the anticancer drugs temozolomide (Temodal) and mitozolomide to triplex-forming oligonucleotides (TFOs) is a potential way of targeting these alkylating agents to specific gene sequences to maximise site-selectivity. In this work, polypyrimidine TFO conjugates of both drugs were synthesised and targeted to duplex DNA in an attempt to effect site-specific alkylation of guanine residues. Concurrently, in an attempt to enhance the triple helix stability of TFOs at neutral pH, the thermal stabilities of triplexes formed from TFOs containing isoguanine, 2-O-benzyl- and 2-O-allyl-adenine were evaluated. A novel cleavage and deprotection procedure was developed which allowed for the solid phase synthesis of the base-sensitive TFO-drug conjugates using a recently developed silyl-linked controlled pore glass (SLCPG) support. Covalent attachment of either temozolomide or mitozolomide at the 5'-end of TFO conjugates caused no destabilisation of the triplexes studied. The synthesis of a phosphoramidite derivative of mitozolomide enabled direct incorporation of this reagent into a model sequence during DNA synthesis. After cleavage and deprotection of the TFO-drug conjugate, the 5'-end mitozolomide residue was found to have decomposed presumably as a result of ring-opening of the tetrazinone ring. The base-sensitive antibacterial and antitumour agent, metronidazole, was also successfully incorporated at the 5'-end of the oligonucleotide d(T8) using conventional methods. Two C2-substituted derivatives of 2'-deoxyadenosine containing 2-O-benzyl and 2-O-allyl groups were synthesised. Hydrogenolysis of the 2-O-benzyl analogue provided a useful route, amenable to scale-up, for the synthesis of the rare nucleoside 2'-deoxyisoguanosine (isoG). Both the 2-O-allyl and 2-O-benzyl derivatives were incorporated into TFO sequences using phosphoramidite methodology. Thermal melting experiments showed that the 2-O-allyl and 2-O-benzyl groups caused marked destabilisation of the triple helices studied, in contrast to hexose-DNA duplexes, where aralkyl substituents caused significant stabilisation of duplexes. TFOs containing isoG were synthesised by Pd(O)-catalysed deallylation of 2-0-allyl adenine residues. These sequences containing isoG, in its N3- or 02-H tautomeric form, formed triple helices which were equally as stable as those containing adenine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CGRP (calcitonin gene-related peptide) receptor is a family B GPCR (G-protein-coupled receptor). It consists of a GPCR, CLR (calcitonin receptor-like receptor) and an accessory protein, RAMP1 (receptor activity-modifying protein 1). RAMP1 is needed for CGRP binding and also cell-surface expression of CLR. There have been few systematic studies of the ECLs (extracellular loops) of family B GPCRs. However, they are likely to be especially important for the interaction of the N-termini of the peptide agonists that are the natural agonists for these receptors. We have carried out alanine scans on all three ECLs of CLR, as well as their associated juxtamembrane regions. Residues within all three loops influence CGRP binding and receptor activation. Mutation of Ala203 and Ala206 on ECL1 to leucine increased the affinity of CGRP. Residues at the top of TM (transmembrane) helices 2 and 3 influenced CGRP binding and receptor activation. L351A and E357A in TM6/ECL3 reduced receptor expression and may be needed for CLR association with RAMP1. ECL2 seems especially important for CLR function; of the 16 residues so far examined in this loop, eight residues reduce the potency of CGRP at stimulating cAMP production when mutated to alanine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multidrug resistance protein MRP1 mediates the ATP-dependent efflux of many chemotherapeutic agents and organic anions. MRP1 has two nucleotide binding sites (NBSs) and three membrane spanning domains (MSDs) containing 17 transmembrane helices linked by extracellular and cytoplasmic loops (CL). Homology models suggest that CL7 (amino acids 1141-1195) is in a position where it could participate in signaling between the MSDs and NBSs during the transport process. We have individually replaced eight charged residues in CL7 with Ala, and in some cases, an amino acid with the same charge, and then investigated the effects on MRP1 expression, transport activity, and nucleotide and substrate interactions. A triple mutant in which Glu(1169), Glu(1170), and Glu(1172) were all replaced with Ala was also examined. The properties of R1173A and E1184A were comparable with those of wild-type MRP1, whereas the remaining mutants were either poorly expressed (R1166A, D1183A) or exhibited reduced transport of one or more organic anions (E1144A, D1179A, K1181A, (1169)AAQA). Same charge mutant D1183E was also not expressed, whereas expression and activity of R1166K were similar to wild-type MRP1. The moderate substrate-selective changes in transport activity displayed by mutants E1144A, D1179A, K1181A, and (1169)AAQA were accompanied by changes in orthovanadate-induced trapping of [alpha-(32)P]azidoADP by NBS2 indicating changes in ATP hydrolysis or release of ADP. In the case of E1144A, estradiol glucuronide no longer inhibited trapping of azidoADP. Together, our results demonstrate the extreme sensitivity of CL7 to mutation, consistent with its critical and complex dual role in both the proper folding and transport activity of MRP1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peptide-based materials exhibit remarkable supramolecular self-assembling behavior, owing to their overwhelming propensity to from hierarchical structures from a-helices and ß-sheets. Coupling a peptide sequence to a synthetic polymer chain allows greater control over the final physical properties of the supermolecular material. So-called ‘polymer-peptide conjugates’ can be used to create biocompatible hydrogels which are held together by reversible physical interactions. Potentially, the hydrogels can be loaded with aqueous-based drug molecules, which can be injected into targeted sites in the body if they can exhibit a gel-sol-gel transition under application and removal of a shear force. In this review, we introduce this topic to readers new to the field of polymer-peptide conjugates, discussing common synthetic strategies and their self-assembling behavior. The lack of examples of actual drug delivery applications from polymer-peptide conjugates is highlighted in an attempt to incite progress in this area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GPCRs exhibit a common architecture of seven transmembrane helices (TMs) linked by intracellular loops and extracellular loops (ECLs). Given their peripheral location to the site of G-protein interaction, it might be assumed that ECL segments merely link the important TMs within the helical bundle of the receptor. However, compelling evidence has emerged in recent years revealing a critical role for ECLs in many fundamental aspects of GPCR function, which supported by recent GPCR crystal structures has provided mechanistic insights. This review will present current understanding of the key roles of ECLs in ligand binding, activation and regulation of both family A and family B GPCRs.