20 resultados para HDFS bottleneck

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The slow down in the drug discovery pipeline is, in part, owing to a lack of structural and functional information available for new drug targets. Membrane proteins, the targets of well over 50% of marketed pharmaceuticals, present a particular challenge. As they are not naturally abundant, they must be produced recombinantly for the structural biology that is a prerequisite to structure-based drug design. Unfortunately, however, obtaining high yields of functional, recombinant membrane proteins remains a major bottleneck in contemporary bioscience. While repeated rounds of trial-and-error optimization have not (and cannot) reveal mechanistic details of the biology of recombinant protein production, examination of the host response has provided new insights. To this end, we published an early transcriptome analysis that identified genes implicated in high-yielding yeast cell factories, which has enabled the engineering of improved production strains. These advances offer hope that the bottleneck of membrane protein production can be relieved rationally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eukaryotic-especially human-membrane protein overproduction remains a major challenge in biochemistry. Heterologously overproduced and purified proteins provide a starting point for further biochemical, biophysical and structural studies, and the lack of sufficient quantities of functional membrane proteins is frequently a bottleneck hindering this. Here, we report exceptionally high production levels of a correctly folded and crystallisable recombinant human integral membrane protein in its active form; human aquaporin 1 (hAQP1) has been heterologously produced in the membranes of the methylotrophic yeast Pichia pastoris. After solubilisation and a two step purification procedure, at least 90 mg hAQP1 per liter of culture is obtained. Water channel activity of this purified hAQP1 was verified by reconstitution into proteoliposomes and performing stopped-flow vesicle shrinkage measurements. Mass spectrometry confirmed the identity of hAQP1 in crude membrane preparations, and also from purified protein reconstituted into proteoliposomes. Furthermore, crystallisation screens yielded diffraction quality crystals of untagged recombinant hAQP1. This study illustrates the power of the yeast P. pastoris as a host to produce exceptionally high yields of a functionally active, human integral membrane protein for subsequent functional and structural characterization. © 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The optimisation and scale-up of process conditions leading to high yields of recombinant proteins is an enduring bottleneck in the post-genomic sciences. Typical experiments rely on varying selected parameters through repeated rounds of trial-and-error optimisation. To rationalise this, several groups have recently adopted the 'design of experiments' (DoE) approach frequently used in industry. Studies have focused on parameters such as medium composition, nutrient feed rates and induction of expression in shake flasks or bioreactors, as well as oxygen transfer rates in micro-well plates. In this study we wanted to generate a predictive model that described small-scale screens and to test its scalability to bioreactors. Results Here we demonstrate how the use of a DoE approach in a multi-well mini-bioreactor permitted the rapid establishment of high yielding production phase conditions that could be transferred to a 7 L bioreactor. Using green fluorescent protein secreted from Pichia pastoris, we derived a predictive model of protein yield as a function of the three most commonly-varied process parameters: temperature, pH and the percentage of dissolved oxygen in the culture medium. Importantly, when yield was normalised to culture volume and density, the model was scalable from mL to L working volumes. By increasing pre-induction biomass accumulation, model-predicted yields were further improved. Yield improvement was most significant, however, on varying the fed-batch induction regime to minimise methanol accumulation so that the productivity of the culture increased throughout the whole induction period. These findings suggest the importance of matching the rate of protein production with the host metabolism. Conclusion We demonstrate how a rational, stepwise approach to recombinant protein production screens can reduce process development time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein crystallization is of strategic and commercial relevance in the post-genomic era because of its pivotal role in structural proteomics projects. Although protein structures are crucial for understanding the function of proteins and to the success of rational drug design and other biotechnology applications, obtaining high quality crystals is a major bottleneck to progress. The major means of obtaining crystals is by massive-scale screening of a target protein solution with numerous crystallizing agents. However, when crystals appear in these screens, one cannot easily know if they are crystals of protein, salt, or any other molecule that happens to be present in the trials. We present here a method based on Attenuated Total Reflection (ATR)-FT-IR imaging that reliably identifies protein crystals through a combination of chemical specificity and the visualizing capability of this approach, thus solving a major hurdle in protein crystallization. ATR-FT-IR imaging was successfully applied to study the crystallization of thaumatin and lysozyme in a high-throughput manner, simultaneously from six different solutions. This approach is fast as it studies protein crystallization in situ and provides an opportunity to examine many different samples under a range of conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eukaryotic membrane proteins cannot be produced in a reliable manner for structural analysis. Consequently, researchers still rely on trial-and-error approaches, which most often yield insufficient amounts. This means that membrane protein production is recognized by biologists as the primary bottleneck in contemporary structural genomics programs. Here, we describe a study to examine the reasons for successes and failures in recombinant membrane protein production in yeast, at the level of the host cell, by systematically quantifying cultures in high-performance bioreactors under tightlydefined growth regimes. Our data show that the most rapid growth conditions of those chosen are not the optimal production conditions. Furthermore, the growth phase at which the cells are harvested is critical: We show that it is crucial to grow cells under tightly-controlled conditions and to harvest them prior to glucose exhaustion, just before the diauxic shift. The differences in membrane protein yields that we observe under different culture conditions are not reflected in corresponding changes in mRNA levels of FPS1, but rather can be related to the differential expression of genes involved in membrane protein secretion and yeast cellular physiology. Copyright © 2005 The Protein Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge elicitation is a well-known bottleneck in the production of knowledge-based systems (KBS). Past research has shown that visual interactive simulation (VIS) could effectively be used to elicit episodic knowledge that is appropriate for machine learning purposes, with a view to building a KBS. Nonetheless, the VIS-based elicitation process still has much room for improvement. Based in the Ford Dagenham Engine Assembly Plant, a research project is being undertaken to investigate the individual/joint effects of visual display level and mode of problem case generation on the elicitation process. This paper looks at the methodology employed and some issues that have been encountered to date. Copyright © 2007 Inderscience Enterprises Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SMEs with a weak internal R&D capacity show the tendency to shy away from using external sources of technical expertise. The tendency deters providers of industrial modernization services from supporting such structurally weak SMEs. This paper examines how Japan's local technology centres - kosetsushi - remove the bottleneck and reach out to a significant proportion of SMEs with a weak R&D capacity in their localities. Kosetsushi centres sustain habitual interactions with client firms through 'low information gap' services solving immediate needs and lead the clients to a riskier and longer path toward innovation capacity building. This gives kosetsushi centres a position distinct from universities and consultancies in the regional innovation system. While long-term relationships between kosetsushi centres and their client firms can increase switching costs and produce lock-in effects, a case study of two kosetsushi centres illustrates the importance of 'low-information gap' services and relational assets created thereby to the modernization of SMEs with a weak internal R&D capacity. The paper calls for long-term commitment by the public sector if it addresses the issue through modernization services.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The production of high yields of recombinant proteins is an enduring bottleneck in the post-genomic sciences that has yet to be addressed in a truly rational manner. Typically eukaryotic protein production experiments have relied on varying expression construct cassettes such as promoters and tags, or culture process parameters such as pH, temperature and aeration to enhance yields. These approaches require repeated rounds of trial-and-error optimization and cannot provide a mechanistic insight into the biology of recombinant protein production. We published an early transcriptome analysis that identified genes implicated in successful membrane protein production experiments in yeast. While there has been a subsequent explosion in such analyses in a range of production organisms, no one has yet exploited the genes identified. The aim of this study was to use the results of our previous comparative transcriptome analysis to engineer improved yeast strains and thereby gain an understanding of the mechanisms involved in high-yielding protein production hosts. Results We show that tuning BMS1 transcript levels in a doxycycline-dependent manner resulted in optimized yields of functional membrane and soluble protein targets. Online flow microcalorimetry demonstrated that there had been a substantial metabolic change to cells cultured under high-yielding conditions, and in particular that high yielding cells were more metabolically efficient. Polysome profiling showed that the key molecular event contributing to this metabolically efficient, high-yielding phenotype is a perturbation of the ratio of 60S to 40S ribosomal subunits from approximately 1:1 to 2:1, and correspondingly of 25S:18S ratios from 2:1 to 3:1. This result is consistent with the role of the gene product of BMS1 in ribosome biogenesis. Conclusion This work demonstrates the power of a rational approach to recombinant protein production by using the results of transcriptome analysis to engineer improved strains, thereby revealing the underlying biological events involved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since much knowledge is tacit, eliciting knowledge is a common bottleneck during the development of knowledge-based systems. Visual interactive simulation (VIS) has been proposed as a means for eliciting experts’ decision-making by getting them to interact with a visual simulation of the real system in which they work. In order to explore the effectiveness and efficiency of VIS based knowledge elicitation, an experiment has been carried out with decision-makers in a Ford Motor Company engine assembly plant. The model properties under investigation were the level of visual representation (2-dimensional, 2½-dimensional and 3-dimensional) and the model parameter settings (unadjusted and adjusted to represent more uncommon and extreme situations). The conclusion from the experiment is that using a 2-dimensional representation with adjusted parameter settings provides the better simulation-based means for eliciting knowledge, at least for the case modelled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research investigated expertise in hazardous substance risk assessment (HSRA). Competent pro-active risk assessment is needed to prevent occupational ill-health caused by hazardous substance exposure occurring in the future. In recent years there has been a strong demand for HSRA expertise and a shortage of expert practitioners. The discipline of Occupational Hygiene was identified as the key repository of knowledge and skills for HSRA and one objective of this research was to develop a method to elicit this expertise from experienced occupational hygienists. In the study of generic expertise, many methods of knowledge elicitation (KE) have been investigated, since this has been relevant to the development of 'expert systems' (thinking computers). Here, knowledge needed to be elicited from human experts, and this stage was often a bottleneck in system development, since experts could not explain the basis of their expertise. At an intermediate stage, information collected was used to structure a basic model of hazardous substance risk assessment activity (HSRA Model B) and this formed the basis of tape transcript analysis in the main study with derivation of a 'classification' and a 'performance matrix'. The study aimed to elicit the expertise of occupational hygienists and compare their performance with other health and safety professionals (occupational health physicians, occupational health nurses, health and safety practitioners and trainee health and safety inspectors), as evaluated using the matrix. As a group, the hygienists performed best in the exercise, and this group were particularly good at process elicitation and at recommending specific control measures, although the other groups also performed well in selected aspects of the matrix and the work provided useful findings and insights. From the research, two models of HSRA have been derived, an HSRA aid, together with a novel videotape KE technique and interesting research findings. The implications of this are discussed with respect to future training of HS professionals and wider application of the videotape KE method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the structures and functions of membrane proteins is an active area of research within bioscience. Membrane proteins are key players in essential cellular processes such as the uptake of nutrients, the export of waste products, and the way in which cells communicate with their environment. It is therefore not surprising that membrane proteins are targeted by over half of all prescription drugs. Since most membrane proteins are not abundant in their native membranes, it is necessary to produce them in recombinant host cells to enable further structural and functional studies. Unfortunately, achieving the required yields of functional recombinant membrane proteins is still a bottleneck in contemporary bioscience. This has highlighted the need for defined and rational optimization strategies based upon experimental observation rather than relying on trial and error. We have published a transcriptome and subsequent genetic analysis that has identified genes implicated in high-yielding yeast cells. These results have highlighted a role for alterations to a cell's protein synthetic capacity in the production of high yields of recombinant membrane protein: paradoxically, reduced protein synthesis favors higher yields. These results highlight a potential bottleneck at the protein folding or translocation stage of protein production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein crystallization has gained a new strategic and commercial relevance in the postgenomic era due to its pivotal role in structural genomics. Producing high quality crystals has always been a bottleneck to efficient structure determination, and this problem is becoming increasingly acute. This is especially true for challenging, therapeutically important proteins that typically do not form suitable crystals. The OptiCryst consortium has focused on relieving this bottleneck by making a concerted effort to improve the crystallization techniques usually employed, designing new crystallization tools, and applying such developments to the optimization of target protein crystals. In particular, the focus has been on the novel application of dual polarization interferometry (DPI) to detect suitable nucleation; the application of in situ dynamic light scattering (DLS) to monitor and analyze the process of crystallization; the use of UV-fluorescence to differentiate protein crystals from salt; the design of novel nucleants and seeding technologies; and the development of kits for capillary counterdiffusion and crystal growth in gels. The consortium collectively handled 60 new target proteins that had not been crystallized previously. From these, we generated 39 crystals with improved diffraction properties. Fourteen of these 39 were only obtainable using OptiCryst methods. For the remaining 25, OptiCryst methods were used in combination with standard crystallization techniques. Eighteen structures have already been solved (30% success rate), with several more in the pipeline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The focus of this study is development of parallelised version of severely sequential and iterative numerical algorithms based on multi-threaded parallel platform such as a graphics processing unit. This requires design and development of a platform-specific numerical solution that can benefit from the parallel capabilities of the chosen platform. Graphics processing unit was chosen as a parallel platform for design and development of a numerical solution for a specific physical model in non-linear optics. This problem appears in describing ultra-short pulse propagation in bulk transparent media that has recently been subject to several theoretical and numerical studies. The mathematical model describing this phenomenon is a challenging and complex problem and its numerical modeling limited on current modern workstations. Numerical modeling of this problem requires a parallelisation of an essentially serial algorithms and elimination of numerical bottlenecks. The main challenge to overcome is parallelisation of the globally non-local mathematical model. This thesis presents a numerical solution for elimination of numerical bottleneck associated with the non-local nature of the mathematical model. The accuracy and performance of the parallel code is identified by back-to-back testing with a similar serial version.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Procedural knowledge is the knowledge required to perform certain tasks. It forms an important part of expertise, and is crucial for learning new tasks. This paper summarises existing work on procedural knowledge acquisition, and identifies two major challenges that remain to be solved in this field; namely, automating the acquisition process to tackle bottleneck in the formalization of procedural knowledge, and enabling machine understanding and manipulation of procedural knowledge. It is believed that recent advances in information extraction techniques can be applied compose a comprehensive solution to address these challenges. We identify specific tasks required to achieve the goal, and present detailed analyses of new research challenges and opportunities. It is expected that these analyses will interest researchers of various knowledge management tasks, particularly knowledge acquisition and capture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this research summary, we provide a novel look into the entrepreneurial profile of the UK in an international context. We use a new method – the Global Entrepreneurship and Development Index GEDI – to identify the entrepreneurial strengths and weaknesses of the UK economy, as well as to identify potential bottlenecks that hold back the performance of the UK relative to other advanced economies. We perform a Penalty for Bottleneck analysis to identify the bottlenecks in the UK's entrepreneurial profile. We also explore optimal resource allocation for UK's policy for National Systems of Entrepreneurship.