4 resultados para H-1 NMR spectroscopic

em Aston University Research Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The research described in this thesis explored the synthesis tlnd characteristltion of biocompatible and biodegradable polymers of lactide through non-toxic titanium alkoxide nitiators. The research objectives focused on the preparation of polylactides in both solvent and solventless media, to produce materials with a wide range of molecular weights. The polylactides were fully characterised using gel permeation chromatography and 1H and 13C NMR spectroscopy. NMR spectroscopy was carried out in the study the reaction mechanisms. Kinetic studies of the ring opening polymerisation of lactide with titanium alkoxide initiators were also conducted using NMR spectroscopy. The objectives of this research were also focused on the enhancement of the flexibility of the polymer chains by synthesising random and block copolymers of lactide and ε-caprolactone using Ti(0-i-Pr)4 as an initiator, This work involved extensive characterisalion of the synthesised copolymers using gel permeation chromatography and 1H and 13C NMR spectroscopic analysis. Kinetic studies of the ring opening polymerisation of ε-caplrolactone and of the copolymerisation of lactide and ε-caprolactone with Ti(O-i-Pr)4 as an initiator were also carried out. The last section of this work involved the synthesis of block and star-shaped copolymers of lactide and poly(ethylene glycol) [PEG]. The preparation of lactide/PEG block copolymers was carried out by ring opening polymerisation of L-Iactide using Ti(O-i-Pr)4 as an initiator and hydroxyl-terminated PEG's with different numbers of hydroxyl groups as co-initiators both in solution and solventless media. These all-in-one polymersations yielded the synthesis of both lactide homopolymer and lactide/PEG block copolymer. In order to selectively synthesise copolymers of lactide and PEG, the experiment was carried out in two steps. The first step consisted of the synthesis of a titanium macro-initiator by exchanging the iso-propoxide ligands by PEG with different numbers of hydroxyl groups. The second step involved the ring opening polymerisation of lactide using the titanium macrocatalyst that was prepared as an initiator. The polymerisations were carried out in a solventless media. The synthesis of lactide/PEG copolymers using polyethylene glycol with amino terminal groups was also discussed. Extensive characterisation of the lactide block copolymers and macroinitiators was carried out using techniques such as, gel permeation chromatography (GPC), NMR spectroscopy and differential scanning calorimeter (DeS).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Grewia polysaccharide gum, a potential pharmaceutical excipient was extracted from the inner stem bark of Grewia mollis, thereupon drying was achieved by three techniques: air-drying, freeze-drying and spray-drying. Analysis of the monosaccharide composition including 1H and 13C NMR spectroscopic analysis of the polysaccharide gum was carried out. The effect of the drying methods on the physicochemical properties of the gum was evaluated by Fourier transformed infra-red (FT-IR) spectroscopy, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis, differential scanning calorimetry and gel permeation chromatography. Monosaccharide sugar analysis revealed that the gum is composed of glucose, rhamnose, galactose, arabinose and xylose as the main neutral sugars. These were supported by the results from 1H and 13C NMR spectroscopic analysis. FT-IR and solid-state NMR results indicated that drying technique has little effect on the structure of the polysaccharide gum but XPS showed that surface chemistry of the gum varied with drying methods. Thermogravimetric analyses showed that oxidation onset varied according to the drying method. The molecular weight was also dependent on the drying technique. For industrial extrapolation, air-drying may be preferable to spray-drying and freeze-drying when relative cost, product stability and powder flow are required, for example in tablet formulation. © 2010 Elsevier Ltd. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In analogy to a common synthesis of 1-substituted 5-H tetrazoles (Tetrahedron Lett. 36 (1995)1759; Beloruss. Gos. Univ., Minsk, USSR. Khim. Geterotsikl. Soedin. 11 (1985) 1521; Beloruss. Gos. Univ., Minsk, USSR. Khim. Geterotsikl. Soedin. 1 (1991) 66; BGU, Belarus. Vestsi Akad. Navuk Belarusi, Ser. Khim. Navuk 1 (1992) 73), the new bidentate ligand 1,2-bis(tetrazol-1-yl)ethane [endi] was synthesized and characterized by X-ray diffraction, NMR, IR and UV–Vis spectroscopy. By using iron(II) tetrafluoroborate hexahydrate the complexation with this ligand yields a 1-dimensional linear coordination polymer similar to the recently published chain compound (Inorg. Chem. 39 (2000) 1891) exhibiting a thermally induced spin-crossover phenomenon. Similar to the 1,2-bis(tetrazol-1-yl)propane-bridged compound, our 1,2-bis(tetrazol-1-yl)ethane-bridged compound shows a gradual spin transition, but the spin-crossover temperature T1/2≈140 K is found to be 10 K above the other T1/2. The T1/2 was determined by temperature-dependent 57Fe-Mössbauer, far FT-IR and UV–Vis spectroscopy as well as by temperature-dependent magnetic susceptibility measurements. Single crystals of the complex were grown in situ from a solution of the ligand and iron(II) tetrafluoroborate. The X-ray structure determinations of both the high spin as well as the low spin state of the compound revealed a solid state structure, which is comparable to that of catena-[Fe(1,2-bis(tetrazole-1-yl)propane)3](ClO4)2 (Inorg. Chem. 39 (2000) 1891; 2nd TMR-TOSS Meeting, 4th Spin Crossover Family Meeting, Lufthansa Training Center, Seeheim/Germany, April 30–May 2, 1999). Both the 1,2-bis(tetrazol-1-yl)propane-bridged and our compound do not show a thermal hysteresis effect (J. Am. Chem. Soc. 115 (1993) 9810; Inorg. Chim. Acta 37 (1979) 169; Chem. Phys. Lett. 93 (1982) 567). The synthesis of the complex described in the experimental section yielded a fine powdered product being poorly soluble in most common solvents. The single crystal measurements were done with crystals obtained by various diffusion methods. Most of them yielded either thin needles or small hexagonal prism crystals depending on the specific conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Metallocene ethylene-1-octene copolymers having different densities and comonomer content ranging from 11 to 36 wt% (m-LLDPE), and a Ziegler copolymer (z-LLDPE) containing the same level of short-chain branching (SCB) corresponding to one of the m-LLDPE polymers, were subjected to extrusion. The effects of temperature (210-285 °C) and multi-pass extrusions (up to five passes) on the rheological and structural characteristics of these polymers were investigated using melt index and capillary rheometry, along with spectroscopic characterisation of the evolution of various products by FTIR, C-NMR and colour measurements. The aim is to develop a better understanding of the effects of processing variables on the structure and thermal degradation of these polymers. Results from rheology show that both extrusion temperature and the amount of comonomer have a significant influence on the polymer melt thermo-oxidative behaviour. At low to intermediate processing temperatures, all m-LLDPE polymers exhibited similar behaviour with crosslinking reactions dominating their thermal oxidation. By contrast, at higher processing temperatures, the behaviour of the metallocene polymers changed depending on the level of comonomer content: higher SCB gave rise to predominantly chain scission reactions whereas polymers with lower level of SCB continued to be dominated by crosslinking. This temperature dependence was attributed to changes in the different evolution of carbonyl and unsaturated compounds including vinyl, vinylidene and trans-vinylene. © 2007 Elsevier Ltd. All rights reserved.