3 resultados para Group Segmentation
em Aston University Research Archive
Resumo:
Recent research has suggested that the A and B share markets of China may be informationally segmented. In this paper volatility patterns in the A and B share market are studied to establish whether volatility changes to the A and B share markets are synchronous. A consequence of new information, when investors act upon it is that volatility rises. This means that if the A and B markets are perfectly integrated volatility changes to each market would be expected to occur at the same time. However, if they are segmented there is no reason for volatility changes to occur on the same day. Using the iterative cumulative sum of squares across the different markets. Evidence is found of integration between the two A share markets but not between the A and B markets. © 2005 Taylor & Francis Group Ltd.
Resumo:
The purpose of this study is threefold: (1) to identify the underlying benefits sought by international visitors to Macau, China, which has emerged as a popular gambling destination in Asia; (2) to segment tourists visiting Macau by employing a cluster analysis based on the benefits sought; and (3) to examine any salient differences between the segment groups with regard to their behavioral characteristics, socio-economic characteristics, and demographic profiles. A convenience sample was used to collect data in the Macau International Airport, in the Macau Ferry Terminal, and at the border gate with Mainland China. A total 1,513 useful surveys were retained for data analysis. Cluster analysis discloses four distinct clusters: "convention and business seekers," "family and vacation seekers," "gambling and shopping seekers," and "multi-purpose seekers." Based on the results of our findings, several managerial implications are discussed. © Taylor & Francis Group, LLC.
Resumo:
Segmentation is an important step in many medical imaging applications and a variety of image segmentation techniques exist. One group of segmentation algorithms is based on clustering concepts. In this article we investigate several fuzzy c-means based clustering algorithms and their application to medical image segmentation. In particular we evaluate the conventional hard c-means (HCM) and fuzzy c-means (FCM) approaches as well as three computationally more efficient derivatives of fuzzy c-means: fast FCM with random sampling, fast generalised FCM, and a new anisotropic mean shift based FCM. © 2010 by IJTS, ISDER.