3 resultados para Groundwater flow.
em Aston University Research Archive
Resumo:
This paper presents the development of a modelling study for part of the Birmingham area. Restricted access and model resolutions have limited wide applications of some of the previously developed models. The study area covers approximately 221 km2, and is underlain geologically, by a multi-layer setup with varied hydraulic properties. The basal aquifer unit is the Kidderminster sandstone Formation, overlain by the Wildmoor and Bromsgrove sandstone Formations. The presence of the Birmingham fault which acts as low permeability barrier demarcates the eastern and southern boundaries. The western boundary is defined by the presence of crystallised rocks and coal measures, while a groundwater divide defines the northern boundary. The estimated recharge flux is 112 mm/yr. The ranges of calibrated values obtained for horizontal and vertical hydraulic conductivities are 5.787x10-6 - 2.315x10-5 m/s and 5.787x10-8 - 1.157x10-7 m/s, respectively. Corresponding values obtained for the specific yield and specific storage are 0.10 - 0.12, and 1x10 -4 - 5x10 -4. The calculated numerical error is generally much less than 0.1 %. Hydraulic layering within the Permo-Triassic sandstone aquifer is thought to account for the large vertical anisotropy. Although, uncertainties are associated with the use of a simplistic delay approach to characterise the effects of the unsaturated zone, the modelled values are comparable with those obtained in the literature, and the flow pattern predictions appear to be realistic. © Research India Publications.
Resumo:
This work is an initial study of a numerical method for identifying multiple leak zones in saturated unsteady flow. Using the conventional saturated groundwater flow equation, the leak identification problem is modelled as a Cauchy problem for the heat equation and the aim is to find the regions on the boundary of the solution domain where the solution vanishes, since leak zones correspond to null pressure values. This problem is ill-posed and to reconstruct the solution in a stable way, we therefore modify and employ an iterative regularizing method proposed in [1] and [2]. In this method, mixed well-posed problems obtained by changing the boundary conditions are solved for the heat operator as well as for its adjoint, to get a sequence of approximations to the original Cauchy problem. The mixed problems are solved using a Finite element method (FEM), and the numerical results indicate that the leak zones can be identified with the proposed method.
Resumo:
Desalination of groundwater is essential in arid regions that are remote from both seawater and freshwater resources. Desirable features of a groundwater desalination system include a high recovery ratio, operation from a sustainable energy source such as solar, and high water output per unit of energy and land. Here we propose a new system that uses a solar-Rankine cycle to drive reverse osmosis (RO). The working fluid such as steam is expanded against a power piston that actuates a pump piston which in turn pressurises the saline water thus passing it through RO membranes. A reciprocating crank mechanism is used to equalise the forces between the two pistons. The choice of batch mode in preference to continuous flow permits maximum energy recovery and minimal concentration polarisation in the vicinity of the RO membrane. This study analyses the sizing and efficiency of the crank mechanism, quantifies energy losses in the RO separation and predicts the overall performance. For example, a system using a field of linear Fresnel collectors occupying 1000 m2 of land and raising steam at 200 °C and 15.5 bar could desalinate 350 m3/day from saline water containing 5000 ppm of sodium chloride with a recovery ratio of 0.7.