2 resultados para Grieco, Janessa

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cortical pain processing is associated with large-scale changes in neuronal connectivity, resulting from neural plasticity phenomena of which brain-derived neurotrophic factor (BDNF) is a central driver. The common single nucleotide polymorphism Val66Met is associated with reduced BDNF activity. Using the trigeminal pain-related evoked potential (tPREP) to repeated electrical painful stimuli, we investigated whether the methionine substitution at codon 66 of the BDNF gene was associated with changes in cortical processing of noxious stimuli. Fifty healthy volunteers were genotyped: 30 were Val/Val and 20 were Met-carriers. tPREPs to 30 stimuli of the right supraorbital nerve using a concentric electrode were recorded. The N2 and P2 component latencies and the N2-P2 amplitude were measured over the 30 stimuli and separately, by dividing the measurements in 3 consecutive blocks of 10 stimuli. The average response to the 30 stimuli did not differ in latency or amplitude between the 2 genotypes. There was a decrease in the N2-P2 amplitude between first and third block in the Val/Val group but not in Met-carriers. BDNF Val66Met is associated with reduced decremental response to repeated electrical stimuli, possibly as a result of ineffective mechanisms of synaptic memory and brain plasticity associated with the polymorphism. PERSPECTIVE: BDNF Val66Met polymorphism affects the tPREP N2-P2 amplitude decrement and influences cortical pain processing through neurotrophin-induced neural plasticity, or through a direct BDNF neurotransmitter-like effect. Our findings suggest that upcoming BDNF central agonists might in the future play a role in pain management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monoamines have an important role in neural plasticity, a key factor in cortical pain processing that promotes changes in neuronal network connectivity. Monoamine oxidase type A (MAOA) is an enzyme that, due to its modulating role in monoaminergic activity, could play a role in cortical pain processing. The X-linked MAOA gene is characterized by an allelic variant of length, the MAOA upstream Variable Number Tandem Repeat (MAOA-uVNTR) region polymorphism. Two allelic variants of this gene are known, the high-activity MAOA (HAM) and low-activity MAOA (LAM). We investigated the role of MAOA-uVNTR in cortical pain processing in a group of healthy individuals measured by the trigeminal electric pain-related evoked potential (tPREP) elicited by repeated painful stimulation. A group of healthy volunteers was genotyped to detect MAOA-uVNTR polymorphism. Electrical tPREPs were recorded by stimulating the right supraorbital nerve with a concentric electrode. The N2 and P2 component amplitude and latency as well as the N2-P2 inter-peak amplitude were measured. The recording was divided into three blocks, each containing 10 consecutive stimuli and the N2-P2 amplitude was compared between blocks. Of the 67 volunteers, 37 were HAM and 30 were LAM. HAM subjects differed from LAM subjects in terms of amplitude of the grand-averaged and first-block N2-P2 responses (HAM>LAM). The N2-P2 amplitude decreased between the first and third block in HAM subjects but not LAM subjects. The MAOA-uVNTR polymorphism seemed to influence the brain response in a repeated tPREP paradigm and suggested a role of the MAOA as a modulator of neural plasticity related to cortical pain processing. Monoamines have an important role in neural plasticity, a key factor in cortical pain processing that promotes changes in neuronal network connectivity. Monoamine oxidase type A (MAOA) is an enzyme that, due to its modulating role in monoaminergic activity, could play a role in cortical pain processing. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.