3 resultados para Gravitational field
em Aston University Research Archive
Resumo:
Rotating fluidised Beds offer the potential for high intensity combustion, large turndown and extended range of fluidising velocity due to the imposition of an artificial gravitational field. Low thermal capacity should also allow rapid response to load changes. This thesis describes investigations of the validity of these potential virtues. Experiments, at atmospheric pressure, were conducted in flow visualisation rigs and a combustor designed to accommodate a distributor 200mm diameter and 80mm axial length. Ancillary experiments were conducted in a 6" diameter conventional fluidised bed. The investigations encompassed assessment of; fluidisation and elutriation, coal feed requirements, start-up and steady-state combustion using premixed propane and air, transition from propane to coal combustion and mechanical design. Assessments were made of an elutriation model and some effects of particle size on the combustion of premixed fuel gas and air. The findings were: a) more reliable start-up and control methods must be developed. Combustion of premixed propane and air led to severe mechanical and operating problems. Manual control of coal combustion was inadequate. b) Design criteria must encompass pressure loss, mechanical strength and high temperature resistance. The flow characteristics of ancillaries and the distributor must be matcheo. c) Fluidisation of a range of particle sizes was investigated. New correlations for minimum fluidisation and fully supported velocities are proposed. Some effects on elutriation of particle size and the distance between the bed surface and exhaust port have been identified. A conic distributor did not aid initial bed distribution. Furthermore, airflow instability was encountered with this distributor shape. Future use of conic distributors is not recommended. Axial solids mixing was found to be poor. A coal feeder was developed which produced uniform fuel distribution throughout the bed. The report concludes that small scale inhibits development of mechanical design and exploration of performance. future research requires larger combustors and automatic control.
Resumo:
This thesis is concerned with exact solutions of Einstein's field equations of general relativity, in particular, when the source of the gravitational field is a perfect fluid with a purely electric Weyl tensor. General relativity, cosmology and computer algebra are discussed briefly. A mathematical introduction to Riemannian geometry and the tetrad formalism is then given. This is followed by a review of some previous results and known solutions concerning purely electric perfect fluids. In addition, some orthonormal and null tetrad equations of the Ricci and Bianchi identities are displayed in a form suitable for investigating these space-times. Conformally flat perfect fluids are characterised by the vanishing of the Weyl tensor and form a sub-class of the purely electric fields in which all solutions are known (Stephani 1967). The number of Killing vectors in these space-times is investigated and results presented for the non-expanding space-times. The existence of stationary fields that may also admit 0, 1 or 3 spacelike Killing vectors is demonstrated. Shear-free fluids in the class under consideration are shown to be either non-expanding or irrotational (Collins 1984) using both orthonormal and null tetrads. A discrepancy between Collins (1984) and Wolf (1986) is resolved by explicitly solving the field equations to prove that the only purely electric, shear-free, geodesic but rotating perfect fluid is the Godel (1949) solution. The irrotational fluids with shear are then studied and solutions due to Szafron (1977) and Allnutt (1982) are characterised. The metric is simplified in several cases where new solutions may be found. The geodesic space-times in this class and all Bianchi type 1 perfect fluid metrics are shown to have a metric expressible in a diagonal form. The position of spherically symmetric and Bianchi type 1 space-times in relation to the general case is also illustrated.
Resumo:
Due to the failure of PRARE the orbital accuracy of ERS-1 is typically 10-15 cm radially as compared to 3-4cm for TOPEX/Poseidon. To gain the most from these simultaneous datasets it is necessary to improve the orbital accuracy of ERS-1 so that it is commensurate with that of TOPEX/Poseidon. For the integration of these two datasets it is also necessary to determine the altimeter and sea state biases for each of the satellites. Several models for the sea state bias of ERS-1 are considered by analysis of the ERS-1 single satellite crossovers. The model adopted consists of the sea state bias as a percentage of the significant wave height, namely 5.95%. The removal of ERS-1 orbit error and recovery of an ERS-1 - TOPEX/Poseidon relative bias are both achieved by analysis of dual crossover residuals. The gravitational field based radial orbit error is modelled by a finite Fourier expansion series with the dominant frequencies determined by analysis of the JGM-2 co-variance matrix. Periodic and secular terms to model the errors due to atmospheric density, solar radiation pressure and initial state vector mis-modelling are also solved for. Validation of the dataset unification consists of comparing the mean sea surface topographies and annual variabilities derived from both the corrected and uncorrected ERS-1 orbits with those derived from TOPEX/Poseidon. The global and regional geographically fixed/variable orbit errors are also analysed pre and post correction, and a significant reduction is noted. Finally the use of dual/single satellite crossovers and repeat pass data, for the calibration of ERS-2 with respect to ERS-1 and TOPEX/Poseidon is shown by calculating the ERS-1/2 sea state and relative biases.