7 resultados para Graphene, Organic Electronics, Transparent Electrode

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical and optical characteristics of a cylindrical alumina insulator (94% Al203) have been measured under ultra-high vacuum (P < 10-8 mBar) conditions. A high-resolution CCD camera was used to make real-time optical recordings of DC prebreakdown luminescence from the ceramic, under conditions where DC current magnitudes were limited to less than 50μA. Two concentric metallized rings formed a pair of co-axial electrodes, on the end-face of the alumina tube; a third 'transparent' electrode was employed to study the effect of an orthogonal electric field upon the radial conduction processes within the metallized alumina specimen. The wavelength-spectra of the emitted light was quantified using a high-speed scanning monochromator and photo-multiplier tube detector. Concurrent electrical measurements were made alongside the recording of optical-emission images. An observed time-dependence of the photon-emission is correlated with a time-variation observed in the DC current-voltage characteristics of the alumina. Optical images were also recorded of pulsed-field surface-flashover events on the alumina ceramic. An intensified high-speed video technique provided 1ms frames of surface-flashover events, whilst 100ns frames were achieved using an ultra high-speed fast-framing camera. By coupling this fast-frame camera to a digital storage oscilloscope, it was possible to establish a temporal correlation between the application of a voltage-pulse to the ceramic and the evolution of photonic emissions from the subsequent surface-flashover event. The electro-optical DC prebreakdown characteristics of the alumina are discussed in terms of solid-state photon-emission processes, that are believed to arise from radiative electron-recombination at vacancy-defects and substitutional impurity centres within the surface-layers of the ceramic. The physical nature of vacancy-defects within an alumina dielectric is extensively explored, with a particular focus placed upon the trapped electron energy-levels that may be present at these defect centres. Finally, consideration is given to the practical application of alumina in the trigger-ceramic of a sealed triggered vacuum gap (TVG) switch. For this purpose, a physical model describing the initiation of electrical breakdown within the TVG regime is proposed, and is based upon the explosive destabilisation of trapped charge within the alumina ceramic, triggering the onset of surface-flashover along the insulator. In the main-gap prebreakdown phase, it is suggested that the electrical-breakdown of the TVG is initiated by the low-field 'stripping' of prebreakdown electrons from vacancy-defects in the ceramic under the influence of an orthogonal main-gap electric field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The controlled synthesis of poly(neopentyl p-styrene sulfonate) (PNSS) using RAFT polymerisation has been studied. Selected experimental conditions led to the production of PNSS with variable molecular weights and low dispersities (D{stroke}≤1.50). The controlled synthesis of poly(neopentyl p-styrene sulfonate) (PNSS) using reversible addition-fragmentation chain transfer polymerisation has been studied under a wide range of experimental conditions. PNSS can be used as an organic-soluble, thermally labile precursor for industrially valuable poly(p-styrene sulfonate), widely employed in technologies such as ionic exchange membranes and organic electronics. The suitability of two different chain transfer agents, three solvents, three different monomer concentrations and two different temperatures for the polymerisation of neopentyl p-styrene sulfonate is discussed in terms of the kinetics of the process and characteristics of the final polymer. Production of PNSS with systematically variable molecular weights and low dispersities (D{stroke} ≤1.50 in all cases) has been achieved using 2-azidoethyl 2-(dodecylthiocarbonothioylthio)-2-methylpropionate in anisole at 75°C, with an initial monomer concentration of 4.0molL-1. Finally, a poly(neopentyl p-styrene sulfonate)-b-polybutadiene-b-poly(neopentyl p-styrene sulfonate) (PNSS-b-PBD-b-PNSS) triblock copolymer has been synthesised via azide-alkyne click chemistry. Moreover, subsequent thermolysis of the PNSS moieties generated poly(p-styrene sulfonate) end blocks. This strategy allows the fabrication of amphiphilic copolymer films from single organic solvents without the need for post-deposition chemical treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the printing industry, the exploitation of triggerable materials that can have their surface properties altered on application of a post-deposition external stimulus has been crucial for the production of robust layers and patterns. To this end, herein, a series of clickable poly(R-alkyl p-styrene sulfonate) homopolymers, with systematically varied thermally-labile protecting groups, has been synthesised via reversible addition-fragmentation chain transfer (RAFT) polymerisation. The polymer range has been designed to offer varied post-deposition thermal treatment to switch them from hydrophobic to hydrophilic. Suitable RAFT conditions have been identified to produce well-defined homopolymers (Đ, Mw/Mn < 1.11 in all cases) at high monomer conversions (>80% for all but one monomer) with controllable molar mass. Poly(p-styrene sulfonate) with an isobutyl protecting group has been shown to be the most readily thermolysed polymer that remains stable at room temperature, and was thus investigated further by incorporation into a diblock copolymer, P3HT-b-PiBSS, by click chemistry. The strategy for preparation of thermal modifiable block copolymers exploiting R-protected p-styrene sulfonates and azide-alkyne click chemistry presented herein allows the design of new, roll-to-roll processable materials for potential application in the printing industry, particularly organic electronics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this research was to investigate the oxidation of organic compounds in molten alkali metal hydroxides containing manganates. It has been shown that controlled oxidation can be readily achieved with high specificity to give products in high yield with very short reaction times. The concurrent changes in the melt were monitored using a vibrating platinum indicator electrode with a quazi-reference electrode which was successfully developed for use in molten (Na-K)OH eutectic at 523K. Henry's Law constants for water in the molten eutectic system (Na-K)OH have been measured and used to calculate the water concentration in the melt. The electrochemistry of manganates in molten (Na-K)OH eutectic at 523K has been studied using the vibrating platinum electrode, and the existence of the species Mn(II), Mn(II!), Mn(IV), Mn(V) and Mn(VI) in such melts has been investigated at various water concentrations. The half-wave potentials of the voltammetric waves were measured versus the cathodic limit of the melt. The stability of Mn(V) or Mn(VI) in the melt was achieved by varying the water concentration. A range of organic chemicals has been passed through molten (Na-K)OH at 523K and the reactions of these chemicals with the melt have been studied. The same organics were then passed through molten (Na-K)OH containing stabilized Mn(V) or Mn{VI) without violent reaction. Methanol, allyl alcohol, propane 1, 2 diol, I-heptene and acetone were oxidized by Mn(V) and Mn(VI). Ethanol was only oxidized by Mn(VI), isopropanol and benzyl alcohol were only oxidized by Mn(V). Npropanol, butanol, 2 methyl propan-2-ol, n-hexane, n-heptane toluene and cyclohexane were unchanged by both Mn(V) and Mn(VI). Detailed experiments have been performed on the reactions of ethanol, iso-propanol and methanol in molten (Na-K)OH containing stabilized Mrt(V) or Mn(VI), and reaction mechanisms have been postulated. Ethanol and iso-propanol were oxidized to acetaldehyde and acetone respectively with a potential for useful chemical process. The oxidation of methanol could be developed as a basis for an industrial methanol disposal process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For all-solution-processed (ASP) devices, transparent conducting oxide (TCO) nanocrystal (NC) inks are anticipated as the next-generation electrodes to replace both those synthesized by sputtering techniques and those consisting of rare metals, but a universal and one-pot method to prepare these inks is still lacking. A universal one-pot strategy is now described; through simply heating a mixture of metal-organic precursors a wide range of TCO NC inks, which can be assembled into high-performance electrodes for use in ASP optoelectronics, were synthesized. This method can be used for various oxide NC inks with yields as high as 10 g. The formed NCs are of high crystallinity, uniform morphology, monodispersity, and high ink stability and feature effective doping. Therefore, the inks can be readily assembled into films with a surface roughness of 1.6 nm. Typically, a sheet resistance of 110 Ω sq-1 can be achieved with a transmittance of 88%, which is the best performance for TCO NC ink-based electrodes described to date. These electrodes can thus drive a polymer light-emitting diode (PLED) with a luminance of 2200 cdm-2 at 100 mA cm-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A porous composite formed of hollow graphene spheres with opens in them and amorphous carbon containing nitrogen and oxygenated groups has been fabricated by annealing the mixture of nanodiamond and polyacrylonitrile (PAN). Electrochemical tests on the electrode made of this material show that it may be a promising electrode material for supercapacitors. The relatively high capacitance is mainly attributed to the small inner electrical resistance, the huge specific surface area and the remaining nitrogen and oxygenated groups from the PAN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed fibre sensors provide unique capabilities for monitoring large infrastructures with high resolution. Practically, all these sensors are based on some kind of backscattering interaction. A pulsed activating signal is launched on one side of the sensing fibre and the backscattered signal is read as a function of the time of flight of the pulse along the fibre. A key limitation in the measurement range of all these sensors is introduced by fibre attenuation. As the pulse travels along the fibre, the losses in the fibre cause a drop of signal contrast and consequently a growth in the measurement uncertainty. In typical single-mode fibres, attenuation imposes a range limit of less than 30km, for resolutions in the order of 1-2 meters. An interesting improvement in this performance can be considered by using distributed amplification along the fibre [1]. Distributed amplification allows having a more homogeneous signal power along the sensing fibre, which also enables reducing the signal power at the input and therefore avoiding nonlinearities. However, in long structures (≥ 50 km), plain distributed amplification does not perfectly compensate the losses and significant power variations along the fibre are to be expected, leading to inevitable limitations in the measurements. From this perspective, it is simple to understand intuitively that the best possible solution for distributed sensors would be offered by a virtually transparent fibre, i.e. a fibre exhibiting effectively zero attenuation in the spectral region of the pulse. In addition, it can be shown that lossless transmission is the working point that allows the minimization of the amplified spontaneous emission (ASE) noise build-up. © 2011 IEEE.