4 resultados para Graph theory.
em Aston University Research Archive
Resumo:
Background—The molecular mechanisms underlying similarities and differences between physiological and pathological left ventricular hypertrophy (LVH) are of intense interest. Most previous work involved targeted analysis of individual signaling pathways or screening of transcriptomic profiles. We developed a network biology approach using genomic and proteomic data to study the molecular patterns that distinguish pathological and physiological LVH. Methods and Results—A network-based analysis using graph theory methods was undertaken on 127 genome-wide expression arrays of in vivo murine LVH. This revealed phenotype-specific pathological and physiological gene coexpression networks. Despite >1650 common genes in the 2 networks, network structure is significantly different. This is largely because of rewiring of genes that are differentially coexpressed in the 2 networks; this novel concept of differential wiring was further validated experimentally. Functional analysis of the rewired network revealed several distinct cellular pathways and gene sets. Deeper exploration was undertaken by targeted proteomic analysis of mitochondrial, myofilament, and extracellular subproteomes in pathological LVH. A notable finding was that mRNA–protein correlation was greater at the cellular pathway level than for individual loci. Conclusions—This first combined gene network and proteomic analysis of LVH reveals novel insights into the integrated pathomechanisms that distinguish pathological versus physiological phenotypes. In particular, we identify differential gene wiring as a major distinguishing feature of these phenotypes. This approach provides a platform for the investigation of potentially novel pathways in LVH and offers a freely accessible protocol (http://sites.google.com/site/cardionetworks) for similar analyses in other cardiovascular diseases.
Resumo:
Healthy brain functioning depends on efficient communication of information between brain regions, forming complex networks. By quantifying synchronisation between brain regions, a functionally connected brain network can be articulated. In neurodevelopmental disorders, where diagnosis is based on measures of behaviour and tasks, a measure of the underlying biological mechanisms holds promise as a potential clinical tool. Graph theory provides a tool for investigating the neural correlates of neuropsychiatric disorders, where there is disruption of efficient communication within and between brain networks. This research aimed to use recent conceptualisation of graph theory, along with measures of behaviour and cognitive functioning, to increase understanding of the neurobiological risk factors of atypical development. Using magnetoencephalography to investigate frequency-specific temporal dynamics at rest, the research aimed to identify potential biological markers derived from sensor-level whole-brain functional connectivity. Whilst graph theory has proved valuable for insight into network efficiency, its application is hampered by two limitations. First, its measures have hardly been validated in MEG studies, and second, graph measures have been shown to depend on methodological assumptions that restrict direct network comparisons. The first experimental study (Chapter 3) addressed the first limitation by examining the reproducibility of graph-based functional connectivity and network parameters in healthy adult volunteers. Subsequent chapters addressed the second limitation through adapted minimum spanning tree (a network analysis approach that allows for unbiased group comparisons) along with graph network tools that had been shown in Chapter 3 to be highly reproducible. Network topologies were modelled in healthy development (Chapter 4), and atypical neurodevelopment (Chapters 5 and 6). The results provided support to the proposition that measures of network organisation, derived from sensor-space MEG data, offer insights helping to unravel the biological basis of typical brain maturation and neurodevelopmental conditions, with the possibility of future clinical utility.
Resumo:
Over the last decade, there has been a trend where water utility companies aim to make water distribution networks more intelligent in order to improve their quality of service, reduce water waste, minimize maintenance costs etc., by incorporating IoT technologies. Current state of the art solutions use expensive power hungry deployments to monitor and transmit water network states periodically in order to detect anomalous behaviors such as water leakage and bursts. However, more than 97% of water network assets are remote away from power and are often in geographically remote underpopulated areas, facts that make current approaches unsuitable for next generation more dynamic adaptive water networks. Battery-driven wireless sensor/actuator based solutions are theoretically the perfect choice to support next generation water distribution. In this paper, we present an end-to-end water leak localization system, which exploits edge processing and enables the use of battery-driven sensor nodes. Our system combines a lightweight edge anomaly detection algorithm based on compression rates and an efficient localization algorithm based on graph theory. The edge anomaly detection and localization elements of the systems produce a timely and accurate localization result and reduce the communication by 99% compared to the traditional periodic communication. We evaluated our schemes by deploying non-intrusive sensors measuring vibrational data on a real-world water test rig that have had controlled leakage and burst scenarios implemented.
Resumo:
In this paper, we use the quantum Jensen-Shannon divergence as a means to establish the similarity between a pair of graphs and to develop a novel graph kernel. In quantum theory, the quantum Jensen-Shannon divergence is defined as a distance measure between quantum states. In order to compute the quantum Jensen-Shannon divergence between a pair of graphs, we first need to associate a density operator with each of them. Hence, we decide to simulate the evolution of a continuous-time quantum walk on each graph and we propose a way to associate a suitable quantum state with it. With the density operator of this quantum state to hand, the graph kernel is defined as a function of the quantum Jensen-Shannon divergence between the graph density operators. We evaluate the performance of our kernel on several standard graph datasets from bioinformatics. We use the Principle Component Analysis (PCA) on the kernel matrix to embed the graphs into a feature space for classification. The experimental results demonstrate the effectiveness of the proposed approach. © 2013 Springer-Verlag.