20 resultados para Granular Solids
em Aston University Research Archive
Resumo:
The paper presents a comparison between the different drag models for granular flows developed in the literature and the effect of each one of them on the fast pyrolysis of wood. The process takes place on an 100 g/h lab scale bubbling fluidized bed reactor located at Aston University. FLUENT 6.3 is used as the modeling framework of the fluidized bed hydrodynamics, while the fast pyrolysis of the discrete wood particles is incorporated as an external user defined function (UDF) hooked to FLUENT’s main code structure. Three different drag models for granular flows are compared, namely the Gidaspow, Syamlal O’Brien, and Wen-Yu, already incorporated in FLUENT’s main code, and their impact on particle trajectory, heat transfer, degradation rate, product yields, and char residence time is quantified. The Eulerian approach is used to model the bubbling behavior of the sand, which is treated as a continuum. Biomass reaction kinetics is modeled according to the literature using a two-stage, semiglobal model that takes into account secondary reactions.
Resumo:
The Nuclear Magnetic Resonance (NMR) spectra of liquids contain a wealth of quantitative information that may be derived, for instance, from chemical shifts and spin-spin couplings. The available information depends on the incoherent rapid molecular motion that causes complicating effects present in the solid state to average to zero. Whereas liquid state NMR spectra show narrow lines, the corresponding NMR spectra from the solid state are normally composed of exceedingly broad resonance lines due to highly restricted molecular motion. It is, therefore, difficult to obtain directly as detailed information from the spectra of solids as from those derived from the liquid state. Studies on a new technique (SINNMR, the sonically induced narrowing of the NMR spectra of solids) to remove line broadening effects in the NMR spectra of the solid state are reported within this thesis. SINNMR involves narrowing the NMR absorptions from solid particles by irradiating them with ultrasound when they are suspended in a support liquid. It is proposed that ultrasound induces incoherent motion of the suspended particles, producing motional characteristics of the particles similar to those of rather large molecules. The first report of apparently successful experiments involving SINNMR[1] emphasised both the irreproducibility of the technique and the uncertainty regarding its true origin. If SINNMR can be made reproducible and the effect definitively attributed to the sonically induced incoherent motional averaging of particles, the technique could offer a simple alternative to the now classical magic-angle spinning (MAS) NMR[2] and the recently reported dynamic angle spinning (DAS)[3] and double rotation (DOR)[4] techniques. Evidence is presented in this thesis to support the proposal that ultrasound may be used to narrow the NMR spectral resonances from solids by inducing incoherent motion of particles suspended in support liquids and, additionally, for some solids, by inducing rotational motion of molecular constituents in the lattices of solids. Successful SINNMR line narrowing using 20 kHz ultrasound is reported for a variety of samples: including trisodium orthophosphate, polytetrafluoroethylene and aluminium alloys. Investigations of SINNMR line narrowing in trisodium phosphate have revealed the relationship between ultrasonic power, particle size and support liquid density for the production of optimum SINNMR conditions. It is also proposed that the incoherent motion of particles induced by 20 kHz ultrasound can originate from interactions between acoustically induced cavitation microjets and particles.
Resumo:
A typical liquid state NMR spectrum is composed of a number of discrete absorptions which can be readily interpreted to yield detailed information about the chemical environment of the nuclei found within the sample. The same cannot be said about the spectra of solid samples. For these the absorptions are typically broad, featureless and yield little information directly. This situation may be further exacerbated by the characteristically long T1 values of nuclei bound within a solid lattice which, consequently, require long inter-sequence delays that necessitate lengthy experiments. This work attempts to address both of these inherent problems. Classically, the resolution of the broad-line spectra of solids into discrete resonances has been achieved by imparting to the sample coherent rotation about specific axes in relation to the polarising magnetic field, as implemented in the magic-angle spinning (MAS) [1], dynamic angle spinning (DAS) [2] and double rotation (DOR) [3] NMR experiments. Recently, an alternative method, sonically induced narrowing of the NMR spectra of solids (SINNMR) [4], has been reported which yields the same well resolved solid-state spectra as the classic solid-state NMR experiments, but which achieves the resolution of the broad-line spectra through the promotion of incoherent motion in a suspension of solid particles. The first part of this work examines SINNMR and, in particular, concentrates on ultrasonically induced evaluation, a phenomenon which is thought to be essential to the incoherent averaging mechanism. The second part of this work extends the principle of incoherent motion, implicit in SINNMR, to a new genre of particulate systems, air fluidized beds, and examines the feasibility of such systems to provide well resolved solid state NMR spectra. Samples of trisodium phosphate dodecahydrate and of aluminium granules are examined using the new method with partially resolved spectra being reported in the case of the latter.
Resumo:
The literature on heat and mass transfer mechanisms in the convective drying of thick beds of solids has been critically reviewed. Related mathematical models of heat transfer are also considered. Experimental and theoretical studies were made of the temperature distribution within beds, and of drying rates, with various materials undergoing convective drying. The experimental work covered thick beds of hygroscopic and non-hygroscopic materials (glass beads of different diameters, polystyrene pellets, activated alumina and wood powder) at air temperatures of 54°C to 84°C. Tests were carried out in a laboratory drying apparatus comprising a wind tunnel through which the air, of controlled temperature and humidity, was passed over a sample suspended from a balance. Thermocouples were inserted at different depths within the sample bed. The temperature distribution profiles for both hygroscopic and non-hygroscopic beds exhibited a clear difference between the temperatures at the surface and bottom during the constant rate period. An effective method was introduced for predicting the critical moisture content. During the falling rate the profiles showed the existence of a receding evaporation plane; this divided the system into a hotter dry zone in the upper section and a wet zone near the bottom. A graphical procedure was established to predict accurately the position of the receding evaporation front at any time. A new mathematical model, based on the receding evaporation front phenomenon, was proposed to predict temperature distributions throughout a bed during drying. Good agreement was obtained when the model was validated by comparing its predictions with experimental data. The model was also able to predict the duration of each drying stage. In experiments using sample trays of different diameters, the drying rate was found to increase with a decrease in the effective length of the bed surface. During the constant rate period with trays of a small effective length, i.e. less than 0.08 m, an 'inversion' in temperature distribution occurred in the bed; the bottom temperature increased and became greater than that of the surface. Experimental measurements were verified in several ways to ensure this phenomenon was real. Theoretical explanations are given for both the effective length and temperature inversion phenomena.
Resumo:
This work is concerned with the assessment of a newer version of the spout-fluid bed where the gas is supplied from a common plenum and the distributor controls the operational phenomenon. Thus the main body of the work deals with the effect of the distributor design on the mixing and segregation of solids in a spout-filled bed. The effect of distributor design in the conventional fluidised bed and of variation of the gas inlet diameter in a spouted bed were also briefly investigated for purpose of comparison. Large particles were selected for study because they are becoming increasingly important in industrial fluidised beds but have not been thoroughly investigated. The mean particle diameters of the fraction ranged from 550 to 2400 mm, and their specific gravity from 0.97 to 2.45. Only work carried out with binary systems is reported here. The effect of air velocity, particle properties, bed height, the relative amount of jetsam and flotsam and initial conditions on the steady-state concentration profiles were assessed with selected distributors. The work is divided into three sections. Sections I and II deal with the fluidised bed and spouted bed systems. Section III covers the development of the spout-filled bed and its behaviour with reference to distributor design and it is shown how benefits of both spouting and fluidising phenomena can be exploited. In the fluidisation zone, better mixing is achieved by distributors which produce a large initial bubble diameter. Some common features exist between the behaviour of unidensity jetsam-rich systems and different density flotsam-rich systems. The shape factor does not seem to have an affect as long as it is only restricted to the minor component. However, in the case of the major component, particle shape significantly affects the final results. Studies of aspect ratio showed that there is a maximum (1.5) above which slugging occurs and the effect of the distributor design is nullified. A mixing number was developed for unidensity spherical rich systems, which proved to be extremely useful in quantifying the variation in mixing and segregation with changes in distributor design.
Resumo:
This work is concerned with a study of certain phenomena related to the performance and design of distributors in gas fluidized beds with particular regard to flowback of solid particles. The work to be described is divided into two parts. I. In Part one, a review of published material pertaining to distribution plates, including details from the patent specifications, has been prepared. After a chapter on the determination of the incipient fluidizing velocity, the following aspects of multi-orifice distributor plates in gas fluidized beds have been studied: (i) The effect of the distributor on bubble formation related to the way in which even distribution of bubbles on the top surface of the fluidized bed is obtained, e.g. the desirable pressure drop ratio ?PD/?PB for the even distribution of gas across the bed. Ratios of distributor pressure drop ?PD to bed pressure drop at which stable fluidization occurs show reasonable agreement with industrial practice. There is evidence that larger diameter beds tend to be less stable than smaller diameter beds when these are operated with shallow beds. Experiments show that in the presence of the bed the distributor pressure drop is reduced relative to the pressure drop without the bed, and this pressure drop in the former condition is regarded as the appropriate parameter for the design of the distributor. (ii) Experimental measurements of bubble distribution at the surface has been used to indicate maldistribution within the bed. Maldistribution is more likely at low gas flow rates and with distributors having large fractional free area characteristics (i.e. with distributors having low pressure drops). Bubble sizes obtained from this study, as well as those of others, have been successfully correlated. The correlation produced implies the existence of a bubble at the surface of an orifice and its growth by the addition of excess gas from the fluidized bed. (iii) For a given solid system, the amount of defluidized particles stagnating on the distributor plate is influenced by the orifice spacing, bed diameter and gas flow rate, but independent of the initial bed height and the way the orifices are arranged on the distributor plate. II. In Part two, solids flowback through single and multi-orifice distributors in two-dimensional and cylindrical beds of solids fluidized with air has been investigated. Distributors equipped with long cylindrical nozzles have also been included in the study. An equation for the prediction of free flowback of solids through multi-orifice distributors has been derived. Under fluidized conditions two regimes of flowback have been differentiated, namely Jumping and weeping. Data in the weeping regime have been successfully correlated. The limiting gas velocity through the distributor orifices at which flowback is completely excluded is found to be indepnndent of bed height, but a function of distributor design and physical properties of gas and solid used. A criterion for the prediction of this velocity has been established. The decisive advantage of increasing the distributor thickness or using nozzles to minimize solids flowback in fluidized beds has been observed and the opportunity taken to explore this poorly studied subject area. It has been noted, probably for the first time, that with long nozzles, there exists a critical nozzle length above which uncontrollable downflow of solids occurs. A theoretical model for predicting the critical length of a bundle of nozzles in terms of gas velocity through the nozzles has been set up. Theoretical calculations compared favourably with experiments.
Resumo:
In biaxial compression tests, the stress calculations based on boundary information underestimate the principal stresses leading to a significant overestimation of the shear strength. In direct shear tests, the shear strain becomes highly concentrated in the mid-plane of the sample during the test. Although the stress distribution within the specimen is heterogeneous, the evolution of the stress ratio inside the shear band is similar to that inferred from the boundary force calculations. It is also demonstrated that the dilatancy in the shear band significantly exceeds that implied from the boundary displacements. In simple shear tests, the stresses acting on the wall boundaries do not reflect the internal state of stress but merely provide information about the average mobilised wall friction. It is demonstrated that the results are sensitive to the initial stress state defined by K0 = sh/sv. For all cases, non-coaxiality of the principal stress and strain-rate directions is examined and the corresponding flow rule is identified. Periodic cell simulations have been used to examine biaxial compression for a wide range of initial packing densities. Both constant volume and constant mean stress tests have been simulated. The characteristic behaviour at both the macroscopic and microscopic scales is determined by whether or not the system percolates (enduring connectivity is established in all directions). The transition from non-percolating to percolating systems is characterised by transitional behaviour of internal variables and corresponds to an elastic percolation threshold, which correlates well with the establishment of a mechanical coordination number of ca. 3.0. Strong correlations are found between macroscopic and internal variables at the critical state.
Resumo:
The development of more realistic constitutive models for granular media, such as sand, requires ingredients which take into account the internal micro-mechanical response to deformation. Unfortunately, at present, very little is known about these mechanisms and therefore it is instructive to find out more about the internal nature of granular samples by conducting suitable tests. In contrast to physical testing the method of investigation used in this study employs the Distinct Element Method. This is a computer based, iterative, time-dependent technique that allows the deformation of granular assemblies to be numerically simulated. By making assumptions regarding contact stiffnesses each individual contact force can be measured and by resolution particle centroid forces can be calculated. Then by dividing particle forces by their respective mass, particle centroid velocities and displacements are obtained by numerical integration. The Distinct Element Method is incorporated into a computer program 'Ball'. This program is effectively a numerical apparatus which forms a logical housing for this method and allows data input and output, and also provides testing control. By using this numerical apparatus tests have been carried out on disc assemblies and many new interesting observations regarding the micromechanical behaviour are revealed. In order to relate the observed microscopic mechanisms of deformation to the flow of the granular system two separate approaches have been used. Firstly a constitutive model has been developed which describes the yield function, flow rule and translation rule for regular assemblies of spheres and discs when subjected to coaxial deformation. Secondly statistical analyses have been carried out using data which was extracted from the simulation tests. These analyses define and quantify granular structure and then show how the force and velocity distributions use the structure to produce the corresponding stress and strain-rate tensors.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT