1 resultado para Grammatical rules
em Aston University Research Archive
Filtro por publicador
- Aberdeen University (1)
- Academic Research Repository at Institute of Developing Economies (4)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Applied Math and Science Education Repository - Washington - USA (2)
- Archive of European Integration (420)
- Aston University Research Archive (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (14)
- Biodiversity Heritage Library, United States (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (52)
- Brock University, Canada (9)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (79)
- Central European University - Research Support Scheme (3)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (49)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (39)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Peer Publishing (7)
- DigitalCommons@The Texas Medical Center (2)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (3)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (10)
- DRUM (Digital Repository at the University of Maryland) (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (11)
- Harvard University (9)
- Instituto Politécnico do Porto, Portugal (2)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (7)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (7)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (17)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (27)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- School of Medicine, Washington University, United States (11)
- Scielo Saúde Pública - SP (2)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (4)
- Universidad Autónoma de Nuevo León, Mexico (4)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (9)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Técnica de Lisboa (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (25)
- Université de Montréal, Canada (19)
- University of Connecticut - USA (3)
- University of Michigan (5)
- University of Queensland eSpace - Australia (11)
- University of Southampton, United Kingdom (6)
Resumo:
Most research in the area of emotion detection in written text focused on detecting explicit expressions of emotions in text. In this paper, we present a rule-based pipeline approach for detecting implicit emotions in written text without emotion-bearing words based on the OCC Model. We have evaluated our approach on three different datasets with five emotion categories. Our results show that the proposed approach outperforms the lexicon matching method consistently across all the three datasets by a large margin of 17–30% in F-measure and gives competitive performance compared to a supervised classifier. In particular, when dealing with formal text which follows grammatical rules strictly, our approach gives an average F-measure of 82.7% on “Happy”, “Angry-Disgust” and “Sad”, even outperforming the supervised baseline by nearly 17% in F-measure. Our preliminary results show the feasibility of the approach for the task of implicit emotion detection in written text.