15 resultados para Gram-negative bacilli

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postantibiotic effect (PAE) describes the suppression of microbial growth occurring after a short exposure to an antimicrobial agent. PAE appears to be a property of the majority of antimicrobial agents and is demonstrated by a wide variety of microorganisms. At present, carbapenems and penems are the only members of the -lactam group of antimicrobial agents that exhibit a significant PAE on Gram-negative bacilli. A standardised method was developed to evaluate the in vitro PAE of three carbapenems; imipenem, meropenem and biapenem on Gram-negative bacteria under reproducible laboratory conditions that partially mimicked those occurring in vivo. The effects on carbapenem PAE of the method of antimicrobial removal, concentration, exposure duration, inoculum size, inoculum growth phase, multiple exposures and pooled human serum were determined. Additionally, the reproducibility, susceptibility prior to and after PAE determination and inter-strain variation of carbapenem PAE were evaluated. The method developed determined PAE by utilising viable counts and demonstrated carbapenem PAE to be reproducible, constant over successive exposures, dependent on genera, concentration, duration of exposure, inoculum size and growth phase. In addition, carbapenem PAE was not significantly effected either by agitation, the antimicrobial removal method or the viable count diluent. At present, the mechanism underlying PAE is undetermined. It is thought to be due to either the prolonged persistence of the antimicrobial at the cellular site of action or the true recovery period from non-lethal damage. Increasing the L-lysine concentration and salinity at recovery decreased and increased the carbapenem and imipenem PAE of Pseudomonas aeruginosa, respectively. In addition, no apparent change was observed in the production of virulence factors by P.aeruginosa in PAE phase. However, alterations in cell morphology were observed throughout PAE phase, and the reappearance of normal cell morphology corresponded to the duration of PAE determined by viable count. Thus, the recovery of the penicillin binding protein target enzymes appears to be the mechanism behind carbapenem PAE in P. aeruginosa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four novel oxapenem compounds (i.e., AM-112, AM-113, AM-114, and AM-115) were investigated for their β-lactamase inhibitory activity against a panel of isolated class A, C, and D enzymes, which included expanded-spectrum β-lactamase enzymes (ESBLs). The oxapenems were potent β-lactamase inhibitors. Activity varied within the group, with AM-113 and AM-114 proving to be the most active compounds. The 50% inhibitory concentrations for these agents were up to 100,000-fold lower than that of clavulanic acid against class C and D enzymes. As a group, the oxapenems were more potent than clavulanic acid against enzymes from all classes. The ability of these compounds to protect ceftazidime from hydrolysis by β-lactamase-producing strains was evaluated by MIC tests that combined ceftazidime and each oxapenem in a 1:1 or 2:1 ratio. The oxapenems markedly reduced the MICs for ceftazidime against class C hyperproducing strains and strains producing TEM- and SHV-derived ESBLs. There was little difference between the activity of 1:1 and 2:1 combinations of ceftazidime and oxapenem. The oxapenems failed to enhance the activity of ceftazidime against derepressed AmpC-producing Pseudomonas aeruginosa strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sepsis continues to be a major cause of morbidity and mortality as it can readily lead tosevere sepsis, septic shock, multiple organ failure and death. The onset can be rapid and difficult to define clinically. Despite the numerous candidate markers proposed in the literature, to date a serum marker for sepsis has not been found. The aim of this study was to assay the serum of clinically diagnosed patients with eithera Gram-negative or Gram- positive bacterial sepsis for elevated levels of nine potentialmarkers of sepsis, using commercially produced enzyme linked immunosorbent assays(ELISA). The purpose was to find a test marker for sepsis that would be helpful toclinicians in cases of uncertain sepsis and consequently expose false positive BC'scaused by skin or environmental contaminants. Nine test markers were assayed including IL-6, IL-I 0, ILI2, TNF-α, lipopolysaccharide binding protein, procalcitonin, sE-selectin, sICAM -1 and a potential differential marker for Gram-positive sepsis- anti-lipid S antibody. A total of 445 patients were enrolled into this study from the Queen Elizabeth Hospital and Selly Oak Hospital (Birmingham). The results showed that all the markers were elevated in patients with sepsis and that patients with a Gram-negative sepsis consistently produced higher median/range serum levels than those with a Gram-positive sepsis. No single marker was able to identify all the septic patients. Combining two markers caused the sensitivities and specificities for a diagnosis of sepsis to increase to within a 90% to 100% range. By a process of elimination the markers that survived into the last phase were IL-6 with sICAM -1, and anti-lipid S IgG assays Defining cut-off levels for a diagnosis of sepsis became problematic and a semi-blind trial was devised to test the markers in the absence of both clinical details and positive blood cultures. Patients with pyrexia of unknown origin and negative BC were included in this phase (4). The results showed that IL-6 with sICAM-l are authentic markers of sepsis. There was 82% agreement between the test marker diagnosis and the clinical diagnosis for sepsis in patients with a Gram-positive BC and 78% agreement in cases of Gram-negative Be. In the PUO group the test markers identified 12 cases of sepsis and the clinical diagnosis 15. The markers were shown to differentiate between early sepsis and sepsis, inflammatory responses and infection. Anti-lipid S with IL-6 proved be a sensitive marker for Gram-positive infections/sepsis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As part of a study into antimycobacterial compounds a set of phenolic N1-benzylidene-pyridinecarboxamidrazones was prepared and evaluated. This report describes the unexpected discovery of a potent compound with a pronounced selectivity for Gram-positive bacteria over Gram-negative micro-organisms. In addition, this compound is active against various drug-resistant Gram-positive bacteria. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Septic shock can occur as a result of Gram-negative or Gram-positive infection and involves a complex interaction between bacterial factors and the host immune system producing a systemic inflammatory state that may progress to multiple organ failure and death. Gram-positive bacteria are increasingly becoming more prevalent especially Staphylococcus epidermidis in association with indwelling devices. Lipopolysaccaride (LPS) is the key Gram-negative component involved in this process, but it is not clear which components of Gram-positive bacteria are responsible for progression of this often fatal disease. The aim of this thesis was to investigate the effect of bacterial components on the immune systems. Lipid S, a short chain form of lipoteichoic acid (LTA) found to be excreted from bacteria during growth in culture medium was examined along with other Gram-positive cell wall components: LTA, peptidoglycan (PG) and wall teichoic acids (WTA) and LPS from Gram-negative bacteria. Lipid S, LTA, PG and LPS but not WTA all stimulated murine macrophages and cell lines to produce significant amounts of NO, TNF-a, IL-6 and IL-1 and would induce fever and tissue damage seen in inflammatory diseases. Lipid S proved to be the most potent out of the Gram-positive samples tested. IgG antibodies in patients serum were found to bind to and cross react with lipid S and LTA. Anti-inflammatory antibiotics, platelet activating factor (PAF), PAF receptor antagonists and monoclonal antibodies (mAbs) directed to LTA, CD14 and toll-like receptors were utilised to modulate cytokine and NO production. In cell culture the anti-LTA and the anti-CD14 mAbs failed to markedly attenuate the production of NO, TNF-a, IL-6 or IL-1, the anti-TLR4 antibody did greatly inhibit the ability of LPS to stimulate cytokine production but not lipid S. The tetracyclines proved to be the most effective compounds, many were active at low concentrations and showed efficacy to inhibit both lipid S and LPS stimulated macrophages to produce NO.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gram-positive bacteria possess a permeable cell wall that usually does not restrict the penetration of antimicrobials. However, resistance due to restricted penetration can occur, as illustrated by vancomycin-intermediate resistant Staphylococcus aureus strains (VISA) which produce a markedly thickened cell wall. Alterations in these strains include increased amounts of nonamidated glutamine residues in the peptidoglycan and it is suggested that the resistance mechanism involves 'affinity trapping' of vancomycin in the thickened cell wall. VISA strains have reduced doubling times, lower sensitivity to lysostaphin and reduced autolytic activity, which may reflect changes in the D-alanyl ester content of the wall and membrane teichoic acids. Mycobacterial cell walls have a high lipid content, which is assumed to act as a major barrier to the penetration of antimicrobial agents. Relatively hydrophobic antibiotics such as rifampicin and fluoroquinolones may be able to cross the cell wall by diffusion through the hydrophobic bilayer composed of long chain length mycolic acids and glycolipids. Hydrophilic antibiotics and nutrients cannot diffuse across this layer and are thought to use porin channels which have been reported in many species of mycobacteria. The occurrence of porins in a lipid bilayer supports the view that the mycobacterial wall has an outer membrane analogous to that of gram-negative bacteria. However, mycobacterial porins are much less abundant than in the gram-negative outer membrane and allow only low rates of uptake for small hydrophilic nutrients and antibiotics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Staphylococcus epidermidis causes infections associated with medical devices including central venous catheters, orthopaedic prosthetic joints and artificial heart valves. This coagulase-negative Staphylococcus produces a conventional cellular lipoteichoic acid (LTA) and also releases a short-glycerophosphate-chain-length form of LTA (previously termed lipid S) into the medium during growth. The relative pro-inflammatory activities of cellular and short-chain-length exocellular LTA were investigated in comparison with peptidoglycan and wall teichoic acid from S. epidermidis and LPS from Escherichia coli O111. The ability of these components to stimulate the production of proinflammatory cytokines [interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α] and nitric oxide was investigated in a murine macrophage-like cell line (J774.2), and in peritoneal and splenic macrophages. On a weight-for-weight basis the short-chain-length exocellular LTA was the most active of the S. epidermidis products, stimulating significant amounts of each of the inflammatory cytokines and nitric oxide, although it was approximately 100-fold less active than LPS from E. coli. By comparison the full-chain-length cellular LTA and peptidoglycan were less active and the wall teichoic acid had no activity. As an exocellular product potentially released from S. epidermidis biofilms, the short-chain-length exocellular LTA may act as the prime mediator of the host inflammatory response to device-related infection by this organism and act as the Gram-positive equivalent of LPS in Gram-negative sepsis. The understanding of the role of short-chain-length exocellular LTA in Gram-positive sepsis may lead to improved treatment strategies. © 2005 SGM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epitope prediction is becoming a key tool for vaccine discovery. Prospective analysis of bacterial and viral genomes can identify antigenic epitopes encoded within individual genes that may act as effective vaccines against specific pathogens. Since B-cell epitope prediction remains unreliable, we concentrate on T-cell epitopes, peptides which bind with high affinity to Major Histacompatibility Complexes (MHC). In this report, we evaluate the veracity of identified T-cell epitope ensembles, as generated by a cascade of predictive algorithms (SignalP, Vaxijen, MHCPred, IDEB, EpiJen), as a candidate vaccine against the model pathogen uropathogenic gram negative bacteria Escherichia coli (E-coli) strain 536 (O6:K15:H31). An immunoinformatic approach was used to identify 23 epitopes within the E-coli proteome. These epitopes constitute the most promiscuous antigenic sequences that bind across more than one HLA allele with high affinity (IC50 <50nM). The reliability of software programmes used, polymorphic nature of genes encoding MHC and what this means for population coverage of this potential vaccine are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since cyclothialidine was discovered as the most active DNA gyrase inhibitor in 1994, enormous efforts have been devoted to make it into a commercial medicine by a number of pharmaceutical companies and research groups worldwide. However, no serious breakthrough has been made up to now. An essential problem involved with cyclothialidine is that though it demonstrated the potent inhibition of DNA gyrase, it showed little activity against bacteria. This probably is attributable to its inability to penetrate bacterial cell walls and membranes. We applied the TSAR programme to generate a QSAR equation to the gram-negative organisms. In that equation, LogP is profoundly indicated as the key factor influencing the cyclothialidine activity against bacteria. However, the synthesized new analogues have failed to prove that. In the structure based drug design stage, we designed a group of open chain cyclothialidine derivatives by applying the SPROUT programme and completed the syntheses. Improved activity is found in a few analogues and a 3D pharmacophore of the DNA gyrase B is proposed to lead to synthesis of the new derivatives for development of potent antibiotics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of N1-benzylideneheteroarylcarboxamidrazones was prepared in an automated fashion, and tested against Mycobacterium fortuitum in a rapid screen for antimycobacterial activity. Many of the compounds from this series were also tested against Mycobacterium tuberculosis, and the usefulness as M.fortuitum as a rapid, initial screen for anti-tubercular activity evaluated. Various deletions were made to the N1-benzylideneheteroarylcarboxamidrazone structure in order to establish the minimum structural requirements for activity. The N1-benzylideneheteroarylcarbox-amidrazones were then subjected to molecular modelling studies and their activities against M.fortuitum and M.tuberculosis were analysed using quantitative structure-analysis relationship (QSAR) techniques in the computational package TSAR (Oxford Molecular Ltd.). A set of equations predictive of antimycobacterial activity was hereby obtained. The series of N1-benzylidenehetero-arylcarboxamidrazones was also tested against a multidrug-resistant strain of Staphylococcus aureus (MRSA), followed by a panel of Gram-positive and Gram-negative bacteria, if activity was observed for MRSA. A set of antimycobacterial N1-benzylideneheteroarylcarboxamidrazones was hereby discovered, the best of which had MICs against m. fortuitum in the range 4-8μgml-1 and displayed 94% inhibition of M.tuberculosis at a concentration of 6.25μgml-1. The antimycobacterial activity of these compounds appeared to be specific, since the same compounds were shown to be inactive against other classes of organisms. Compounds which were found to be sufficiently active in any screen were also tested for their toxicity against human mononuclear leucocytes. Polyethylene glycol (PEG) was used as a soluble polymeric support for the synthesis of some fatty acid derivatives, containing an isoxazoline group, which may inhibit mycolic acid synthesis in mycobacteria. Both the PEG-bound products and the cleaved, isolated products themselves were tested against M.fortuitum and some low levels of antimycobacterial activity were observed, which may serve as lead compounds for further studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of iron metabolism, both on the invading bacterial pathogen and in the host is widespread and often appears to be crucial in determining the outcome of an infection. This study involved the investigation of leukaemia, a clinical disease where abnormal availability of iron may play a part in predisposing patients to bacterial infection. The iron status throughout a Gram-negative septicaemia and in 20 random, newly diagnosed leukaemic patients was assessed. The results revealed that the majority of the patients exhibited high serum iron levels and serum transferrin saturation often at 100%, with an inability to reduce the latter to within normal values during an infection episode. The antibody response to P.aeruginosa, E.coli and K.pneumoniae outer membrane protein (OMP) antigens were investigated by immunoblotting with sequential serum samples during infection in the leukaemic host. Antibodies to all the major OMPs, were observed, although recognition of iron-regulated membrane proteins (IRMPs) was in many cases weak. Results from the enzyme-linked immunosorbent assay indicated that in all patients antibody titre in response to infection was poor. Sub-MICs of mitomycin C significantly altered the surface characteristics of P.aeruginosa. The silver-stained SDS-PAGE gels of proteinase K digested whole cell lysates of strains PAO1, 6750, M7 and PAJ indicated that core LPS was affected in the presence of mitomycin C. In contrast, the rough strain AK1012 showed no observable differences. Results obtained using quantitative gas-liquid chromatographic analysis showed the amount of LPS fatty acids to be unaffected, however, the KDO and carbohydrate content in strains PAO1, 6750 and M7 under Fe+ and Fe- growth conditions were decreased by up to 4-fold in the presence of mitomycin C, indicating perturbed expression of LPS. The cell surface became significantly more hydrophobic in the P.aeruginosa strains, except AK1012 which was comparatively unaffected. The induction of protein G (OprG) in P.aeruginosa was found to be a sensitive indicator of media iron. The data indicated that expression of OprG can be modulated by growth rate/phase, availability of iron and by the presence of ciprofloxacin in the growth medium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Porphyromonas gingivalis, a gram-negative anaerobe which is implicated in the etiology of active periodontitis, secretes degradative enzymes (gingipains) and sheds proinflammatory mediators (e.g., lipopolysaccharides [LPS]). LPS triggers the secretion of interleukin-8 (IL-8) from immune (72-amino-acid [aa] variant [IL-8(72aa)]) and nonimmune (IL-8(77aa)) cells. IL-8(77aa) has low chemotactic and respiratory burst-inducing activity but is susceptible to cleavage by gingipains. This study shows that both R- and K-gingipain treatments of IL-8(77aa) significantly enhance burst activation by fMLP and chemotactic activity (P < 0.05) but decrease burst activation and chemotactic activity of IL-8(72aa) toward neutrophil-like HL60 cells and primary neutrophils (P < 0.05). Using tandem mass spectrometry, we have demonstrated that R-gingipain cleaves 5- and 11-aa peptides from the N-terminal portion of IL-8(77aa) and the resultant peptides are biologically active, while K-gingipain removes an 8-aa N-terminal peptide yielding a 69-aa isoform of IL-8 that shows enhanced biological activity. During periodontitis, secreted gingipains may differentially affect neutrophil chemotaxis and activation in response to IL-8 according to the cellular source of the chemokine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anaplasma phagocytophilum, a Gram-negative, obligate intracellular bacterium infects primarily neutrophil granulocytes. Infection with A. phagocytophilum leads to inhibition of neutrophil apoptosis and consequently contributes to the longevity of the host cells. Previous studies demonstrated that the infection inhibits the executionary apoptotic machinery in neutrophils. However, little attempt has been made to explore which survival signals are modulated by the pathogen. The aim of the present study was to clarify whether the phosphatidylinositol 3-kinase (PI3K)/Akt and NF-?B signaling pathways, which are considered as important survival pathways in neutrophils, are involved in A. phagocytophilum-induced apoptosis delay. Our data show that infection of neutrophils with A. phagocytophilum activates the PI3K/Akt pathway and suggest that this pathway, which in turn maintains the expression of the antiapoptotic protein Mcl-1, contributes to the infection-induced apoptosis delay. In addition, the PI3K/Akt pathway is involved in the activation of NF-?B in A. phagocytophilum-infected neutrophils. Activation of NF-?B leads to the release of interleukin-8 (IL-8) from infected neutrophils, which, in an autocrine manner, delays neutrophil apoptosis. In addition, enhanced expression of the antiapoptotic protein cIAP2 was observed in A. phagocytophilum-infected neutrophils. Taken together, the data indicate that upstream of the apoptotic cascade, signaling via the PI3K/Akt pathway plays a major role for apoptosis delay in A. phagocytophilum-infected neutrophils.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The surface microflora (902 isolates) of Livarot cheeses from three dairies was investigated during ripening. Yeasts were mainly identified by Fourier transform infrared spectroscopy. Geotrichum candidum was the dominating yeast among 10 species. Bacteria were identified using Biotype 100 strips, dereplicated by repetitive extragenic palindromic PCR (rep-PCR); 156 representative strains were identified by either BOX-PCR or (GTG) 55-PCR, and when appropriate by 16S rDNA sequencing and SDS-PAGE analysis. Gram-positive bacteria accounted for 65% of the isolates and were mainly assigned to the genera Arthrobacter, Brevibacterium, Corynebacterium, and Staphylococcus. New taxa related to the genera Agrococcus and Leucobacter were found. Yeast and Gram-positive bacteria strains deliberately added as smearing agents were sometimes undetected during ripening. Thirty-two percent of the isolates were Gram-negative bacteria, which showed a high level of diversity and mainly included members of the genera Alcaligenes, Hafnia, Proteus, Pseudomonas, and Psychrobacter. Whatever the milk used (pasteurized or unpasteurized), similar levels of biodiversity were observed in the three dairies, all of which had efficient cleaning procedures and good manufacturing practices. It appears that some of the Gramnegative bacteria identified should now be regarded as potentially useful in some cheese technologies. The assessment of their positive versus negative role should be objectively examined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Comprehensive collaborative studies from our laboratories reveal the extensive biodiversity of the microflora of the surfaces of smear-ripened cheeses. Two thousand five hundred ninety-seven strains of bacteria and 2,446 strains of yeasts from the surface of the smear-ripened cheeses Limburger, Reblochon, Livarot, Tilsit, and Gubbeen, isolated at three or four times during ripening, were identified; 55 species of bacteria and 30 species of yeast were found. The microfloras of the five cheeses showed many similarities but also many differences and interbatch variation. Very few of the commercial smear microorganisms, deliberately inoculated onto the cheese surface, were reisolated and then mainly from the initial stages of ripening, implying that smear cheese production units must have an adventitious "house" flora. Limburger cheese had the simplest microflora, containing two yeasts, Debaryomyces hansenii and Geotrichum candidum, and two bacteria, Arthrobacter arilaitensis and Brevibacterium aurantiacum. The microflora of Livarot was the most complicated, comprising 10 yeasts and 38 bacteria, including many gram-negative organisms. Reblochon also had a very diverse microflora containing 8 yeasts and 13 bacteria (excluding gram-negative organisms which were not identified), while Gubbeen had 7 yeasts and 18 bacteria and Tilsit had 5 yeasts and 9 bacteria. D. hansenii was by far the dominant yeast, followed in order by G. candidum, Candida catenulata, and Kluyveromyces lactis. B. aurantiacum was the dominant bacterium and was found in every batch of the 5 cheeses. The next most common bacteria, in order, were Staphylococcus saprophyticus, A. arilaitensis, Corynebacterium casei, Corynebacterium variabile, and Microbacterium gubbeenense. S. saprophyticus was mainly found in Gubbeen, and A. arilaitensis was found in all cheeses but not in every batch. C. casei was found in most batches of Reblochon, Livarot, Tilsit, and Gubbeen. C. variabile was found in all batches of Gubbeen and Reblochon but in only one batch of Tilsit and in no batch of Limburger or Livarot. Other bacteria were isolated in low numbers from each of the cheeses, suggesting that each of the 5 cheeses has a unique microflora. In Gubbeen cheese, several different strains of the dominant bacteria were present, as determined by pulsed-field gel electrophoresis, and many of the less common bacteria were present as single clones. The culture-independent method, denaturing gradient gel electrophoresis, resulted in identification of several bacteria which were not found by the culture-dependent (isolation and rep-PCR identification) method. It was thus a useful complementary technique to identify other bacteria in the cheeses. The gross composition, the rate of increase in pH, and the indices of proteolysis were different in most of the cheeses.