10 resultados para Globe Land Cover - Share
em Aston University Research Archive
Resumo:
Monitoring land-cover changes on sites of conservation importance allows environmental problems to be detected, solutions to be developed and the effectiveness of actions to be assessed. However, the remoteness of many sites or a lack of resources means these data are frequently not available. Remote sensing may provide a solution, but large-scale mapping and change detection may not be appropriate, necessitating site-level assessments. These need to be easy to undertake, rapid and cheap. We present an example of a Web-based solution based on free and open-source software and standards (including PostGIS, OpenLayers, Web Map Services, Web Feature Services and GeoServer) to support assessments of land-cover change (and validation of global land-cover maps). Authorised users are provided with means to assess land-cover visually and may optionally provide uncertainty information at various levels: from a general rating of their confidence in an assessment to a quantification of the proportions of land-cover types within a reference area. Versions of this tool have been developed for the TREES-3 initiative (Simonetti, Beuchle and Eva, 2011). This monitors tropical land-cover change through ground-truthing at latitude / longitude degree confluence points, and for monitoring of change within and around Important Bird Areas (IBAs) by Birdlife International and the Royal Society for the Protection of Birds (RSPB). In this paper we present results from the second of these applications. We also present further details on the potential use of the land-cover change assessment tool on sites of recognised conservation importance, in combination with NDVI and other time series data from the eStation (a system for receiving, processing and disseminating environmental data). We show how the tool can be used to increase the usability of earth observation data by local stakeholders and experts, and assist in evaluating the impact of protection regimes on land-cover change.
Resumo:
Volunteered Geographic Information (VGI) represents a growing source of potentially valuable data for many applications, including land cover map validation. It is still an emerging field and many different approaches can be used to take value from VGI, but also many pros and cons are related to its use. Therefore, since it is timely to get an overview of the subject, the aim of this article is to review the use of VGI as reference data for land cover map validation. The main platforms and types of VGI that are used and that are potentially useful are analysed. Since quality is a fundamental issue in map validation, the quality procedures used by the platforms that collect VGI to increase and control data quality are reviewed and a framework for addressing VGI quality assessment is proposed. A review of cases where VGI was used as an additional data source to assist in map validation is made, as well as cases where only VGI was used, indicating the procedures used to assess VGI quality and fitness for use. A discussion and some conclusions are drawn on best practices, future potential and the challenges of the use of VGI for land cover map validation.
Resumo:
The number of remote sensing platforms and sensors rises almost every year, yet much work on the interpretation of land cover is still carried out using either single images or images from the same source taken at different dates. Two questions could be asked of this proliferation of images: can the information contained in different scenes be used to improve the classification accuracy and, what is the best way to combine the different imagery? Two of these multiple image sources are MODIS on the Terra platform and ETM+ on board Landsat7, which are suitably complementary. Daily MODIS images with 36 spectral bands in 250-1000 m spatial resolution and seven spectral bands of ETM+ with 30m and 16 days spatial and temporal resolution respectively are available. In the UK, cloud cover may mean that only a few ETM+ scenes may be available for any particular year and these may not be at the time of year of most interest. The MODIS data may provide information on land cover over the growing season, such as harvest dates, that is not present in the ETM+ data. Therefore, the primary objective of this work is to develop a methodology for the integration of medium spatial resolution Landsat ETM+ image, with multi-temporal, multi-spectral, low-resolution MODIS \Terra images, with the aim of improving the classification of agricultural land. Additionally other data may also be incorporated such as field boundaries from existing maps. When classifying agricultural land cover of the type seen in the UK, where crops are largely sown in homogenous fields with clear and often mapped boundaries, the classification is greatly improved using the mapped polygons and utilising the classification of the polygon as a whole as an apriori probability in classifying each individual pixel using a Bayesian approach. When dealing with multiple images from different platforms and dates it is highly unlikely that the pixels will be exactly co-registered and these pixels will contain a mixture of different real world land covers. Similarly the different atmospheric conditions prevailing during the different days will mean that the same emission from the ground will give rise to different sensor reception. Therefore, a method is presented with a model of the instantaneous field of view and atmospheric effects to enable different remote sensed data sources to be integrated.
Resumo:
Urban regions present some of the most challenging areas for the remote sensing community. Many different types of land cover have similar spectral responses, making them difficult to distinguish from one another. Traditional per-pixel classification techniques suffer particularly badly because they only use these spectral properties to determine a class, and no other properties of the image, such as context. This project presents the results of the classification of a deeply urban area of Dudley, West Midlands, using 4 methods: Supervised Maximum Likelihood, SMAP, ECHO and Unsupervised Maximum Likelihood. An accuracy assessment method is then developed to allow a fair representation of each procedure and a direct comparison between them. Subsequently, a classification procedure is developed that makes use of the context in the image, though a per-polygon classification. The imagery is broken up into a series of polygons extracted from the Marr-Hildreth zero-crossing edge detector. These polygons are then refined using a region-growing algorithm, and then classified according to the mean class of the fine polygons. The imagery produced by this technique is shown to be of better quality and of a higher accuracy than that of other conventional methods. Further refinements are suggested and examined to improve the aesthetic appearance of the imagery. Finally a comparison with the results produced from a previous study of the James Bridge catchment, in Darleston, West Midlands, is made, showing that the Polygon classified ATM imagery performs significantly better than the Maximum Likelihood classified videography used in the initial study, despite the presence of geometric correction errors.
Resumo:
Remote sensing data is routinely used in ecology to investigate the relationship between landscape pattern as characterised by land use and land cover maps, and ecological processes. Multiple factors related to the representation of geographic phenomenon have been shown to affect characterisation of landscape pattern resulting in spatial uncertainty. This study investigated the effect of the interaction between landscape spatial pattern and geospatial processing methods statistically; unlike most papers which consider the effect of each factor in isolation only. This is important since data used to calculate landscape metrics typically undergo a series of data abstraction processing tasks and are rarely performed in isolation. The geospatial processing methods tested were the aggregation method and the choice of pixel size used to aggregate data. These were compared to two components of landscape pattern, spatial heterogeneity and the proportion of landcover class area. The interactions and their effect on the final landcover map were described using landscape metrics to measure landscape pattern and classification accuracy (response variables). All landscape metrics and classification accuracy were shown to be affected by both landscape pattern and by processing methods. Large variability in the response of those variables and interactions between the explanatory variables were observed. However, even though interactions occurred, this only affected the magnitude of the difference in landscape metric values. Thus, provided that the same processing methods are used, landscapes should retain their ranking when their landscape metrics are compared. For example, highly fragmented landscapes will always have larger values for the landscape metric "number of patches" than less fragmented landscapes. But the magnitude of difference between the landscapes may change and therefore absolute values of landscape metrics may need to be interpreted with caution. The explanatory variables which had the largest effects were spatial heterogeneity and pixel size. These explanatory variables tended to result in large main effects and large interactions. The high variability in the response variables and the interaction of the explanatory variables indicate it would be difficult to make generalisations about the impact of processing on landscape pattern as only two processing methods were tested and it is likely that untested processing methods will potentially result in even greater spatial uncertainty. © 2013 Elsevier B.V.
Resumo:
This paper presents a framework for considering quality control of volunteered geographic information (VGI). Different issues need to be considered during the conception, acquisition and post-acquisition phases of VGI creation. This includes items such as collecting metadata on the volunteer, providing suitable training, giving corrective feedback during the mapping process and use of control data, among others. Two examples of VGI data collection are then considered with respect to this quality control framework, i.e. VGI data collection by National Mapping Agencies and by the most recent Geo-Wiki tool, a game called Cropland Capture. Although good practices are beginning to emerge, there is still the need for the development and sharing of best practice, especially if VGI is to be integrated with authoritative map products or used for calibration and/or validation of land cover in the future.
Resumo:
Monitoring is essential for conservation of sites, but capacity to undertake it in the field is often limited. Data collected by remote sensing has been identified as a partial solution to this problem, and is becoming a feasible option, since increasing quantities of satellite data in particular are becoming available to conservationists. When suitably classified, satellite imagery can be used to delineate land cover types such as forest, and to identify any changes over time. However, the conservation community lacks (a) a simple tool appropriate to the needs for monitoring change in all types of land cover (e.g. not just forest), and (b) an easily accessible information system which allows for simple land cover change analysis and data sharing to reduce duplication of effort. To meet these needs, we developed a web-based information system which allows users to assess land cover dynamics in and around protected areas (or other sites of conservation importance) from multi-temporal medium resolution satellite imagery. The system is based around an open access toolbox that pre-processes and classifies Landsat-type imagery, and then allows users to interactively verify the classification. These data are then open for others to utilize through the online information system. We first explain imagery processing and data accessibility features, and then demonstrate the toolbox and the value of user verification using a case study on Nakuru National Park, Kenya. Monitoring and detection of disturbances can support implementation of effective protection, assist the work of park managers and conservation scientists, and thus contribute to conservation planning, priority assessment and potentially to meeting monitoring needs for Aichi target 11.
Resumo:
The accuracy of a map is dependent on the reference dataset used in its construction. Classification analyses used in thematic mapping can, for example, be sensitive to a range of sampling and data quality concerns. With particular focus on the latter, the effects of reference data quality on land cover classifications from airborne thematic mapper data are explored. Variations in sampling intensity and effort are highlighted in a dataset that is widely used in mapping and modelling studies; these may need accounting for in analyses. The quality of the labelling in the reference dataset was also a key variable influencing mapping accuracy. Accuracy varied with the amount and nature of mislabelled training cases with the nature of the effects varying between classifiers. The largest impacts on accuracy occurred when mislabelling involved confusion between similar classes. Accuracy was also typically negatively related to the magnitude of mislabelled cases and the support vector machine (SVM), which has been claimed to be relatively insensitive to training data error, was the most sensitive of the set of classifiers investigated, with overall classification accuracy declining by 8% (significant at 95% level of confidence) with the use of a training set containing 20% mislabelled cases.
Resumo:
The northern half of the parish of St. Catherine in Jamaica was selected as a test area to study, by means of remote sensing, the problems of soil erosion in a tropical environment. An initial study was carried out to determine whether eroded land within this environment could be successfully interpreted and mapped from the available 1: 25,000 scale aerial photographs. When satisfied that a sufficiently high percentage of the eroded land could be interpreted on the aerial photographs the main study was initiated. This involved interpreting the air photo cover of the study area for identifying and classifying land use and eroded land, and plotting the results on overlays on topographic base maps. These overlays were then composited with data on the soils and slopes of the study area. The areas of different soil type/slope/land use combinations were then measured, as was the area of eroded land for each of these combinations. This data was then analysed in two ways. The first way involved determining which of the combinations of soil type, slope and land use were most and least eroded and, on the basis of this, to draw up recommendations concerning future land use. The second analysis was aimed at determining which of the three factors, soil type, slope and land use, was most responsible for determining the rate of erosion. Although it was possible to show that slope was not very significant in determining the rate of erosion, it was much more difficult to separate the effects of land use and soil type. The results do, however, suggest that land use is more significant than soil type in determining the rate of erosion within the study area.
Resumo:
This study was concerned with the computer automation of land evaluation. This is a broad subject with many issues to be resolved, so the study concentrated on three key problems: knowledge based programming; the integration of spatial information from remote sensing and other sources; and the inclusion of socio-economic information into the land evaluation analysis. Land evaluation and land use planning were considered in the context of overseas projects in the developing world. Knowledge based systems were found to provide significant advantages over conventional programming techniques for some aspects of the land evaluation process. Declarative languages, in particular Prolog, were ideally suited to integration of social information which changes with every situation. Rule-based expert system shells were also found to be suitable for this role, including knowledge acquisition at the interview stage. All the expert system shells examined suffered from very limited constraints to problem size, but new products now overcome this. Inductive expert system shells were useful as a guide to knowledge gaps and possible relationships, but the number of examples required was unrealistic for typical land use planning situations. The accuracy of classified satellite imagery was significantly enhanced by integrating spatial information on soil distribution for Thailand data. Estimates of the rice producing area were substantially improved (30% change in area) by the addition of soil information. Image processing work on Mozambique showed that satellite remote sensing was a useful tool in stratifying vegetation cover at provincial level to identify key development areas, but its full utility could not be realised on typical planning projects, without treatment as part of a complete spatial information system.