4 resultados para Global Warming Potential, Nitrous oxide, Maize
em Aston University Research Archive
Resumo:
Lichenometry is one of many techniques now available for estimating the elapsed time since the exposure of a substratum. Its advantages include an ability to date surfaces during the last 500 years, a time interval in which radiocarbon dating is least efficient, and provides a quick, cheap, and relatively accurate date for a substratum.
Resumo:
This paper reviews nitrogen (N) cycle of effluent-irrigated energy crop plantations, starting from wastewater treatment to thermo-chemical conversion processes. In wastewater, N compounds contribute to eutrophication and toxicity in water cycle. Removal of N via vegetative filters and specifically in short-rotation energy plantations, is a relatively new approach to managing nitrogenous effluents. Though combustion of energy crops is in principle carbon neutral, in practice, N content may contribute to NOx emissions with significant global warming potential. Intermediate pyrolysis produces advanced fuels while reducing such emissions. By operating at intermediate temperature (500°C), it retains most N in char as pyrrolic-N, pyridinic-N, quaternary-N and amines. In addition, biochar provides long-term sequestration of carbon in soils.
Resumo:
1. Exchange of carbon dioxide (CO2) from soils can contribute significantly to the global warming potential (GWP) of agro-ecosystems. Due to variations in soil type, climatic onditions and land management practices, exchange of CO2 can differ markedly in different geographical locations. The food industry is developing carbon footprints for their products necessitating integration of CO2 exchange from soils with other CO2 emissions along the food chain. It may be advantageous to grow certain crops in different geographical locations to minimize CO2 emissions from the soil, and this may provide potential to offset other emissions in the food chain, such as transport. 2. Values are derived for the C balance of soils growing horticultural crops in the UK, Spain and Uganda. Net ecosystem production (NEP) is firstly calculated from the difference in net primary production (NPP) and heterotrophic soil respiration (Rh). Both NPP and Rh were estimated from intensive direct field measurements. Secondly, net biome production (NBP) is calculated by subtracting the crop biomass from NEP to give an indication of C balance. The importance of soil exchange is discussed in the light of recent discussions on carbon footprints and within the context of food life-cycle assessment (LCA). 3. The amount of crop relative to the biomass and the Rh prevailing in the different countries were the dominant factors influencing the magnitude of NEP and NBP. The majority of the biomass for lettuce Lactuca sativa and vining peas Pisum sativum, was removed from the field as crop; therefore, NEP and NBP were mainly negative. This was amplified for lettuces grown in Uganda (-16·5 and -17 t C ha-1 year-1 compared to UK and Spain -4·8 to 7·4 and -5·1 to 6·3 t C ha-1 year-1 for NEP and NBP, respectively) where the climate elevated Rh. 4. Synthesis and applications. This study demonstrates the importance of soil emissions in the overall life cycle of vegetables. Variability in such emissions suggests that assigning a single value to food carbon footprints may not be adequate, even within a country. Locations with high heterotrophic soil respiration, such as Spain and Uganda (21·9 and 21·6 t C ha-1 year-1, respectively), could mitigate the negative effects of climate on the C costs of crop production by growth of crops with greater returns of residue to the soil. This would minimize net CO2 emissions from these agricultural ecosystems.
Resumo:
Currently, the main source for the production of liquid transportation fuels is petroleum, the continued use of which faces many challenges including depleting oil reserves, significant oil price rises, and environmental concerns over global warming which is widely believed to be due to fossil fuel derived CO2 emissions and other greenhouse gases. In this respect, lignocellulosic or plant biomass is a particularly interesting resource as it is the only renewable source of organic carbon that can be converted into liquid transportation fuels. The gasification of biomass produces syngas which can then be converted into synthetic liquid hydrocarbon fuels by means of the Fischer-Tropsch (FT) synthesis. This process has been widely considered as an attractive option for producing clean liquid hydrocarbon fuels from biomass that have been identified as promising alternatives to conventional fossil fuels like diesel and kerosene. The resulting product composition in FT synthesis is influenced by the type of catalyst and the reaction conditions that are used in the process. One of the issues facing this conversion process is the development of a technology that can be scaled down to match the scattered nature of biomass resources, including lower operating pressures, without compromising liquid composition. The primary aims of this work were to experimentally explore FT synthesis at low pressures for the purpose of process down-scaling and cost reduction, and to investigate the potential for obtaining an intermediate FT synthetic crude liquid product that can be integrated into existing refineries under the range of process conditions employed. Two different fixed-bed micro-reactors were used for FT synthesis; a 2cm3 reactor at the University of Rio de Janeiro (UFRJ) and a 20cm3 reactor at Aston University. The experimental work firstly involved the selection of a suitable catalyst from three that were available. Secondly, a parameter study was carried out on the 20cm3 reactor using the selected catalyst to investigate the influence of reactor temperature, reactor pressure, space velocity, the H2/CO molar ratio in the feed syngas and catalyst loading on the reaction performance measured as CO conversion, catalyst stability, product distribution, product yields and liquid hydrocarbon product composition. From this parameter study a set of preferred operating conditions was identified for low pressure FT synthesis. The three catalysts were characterized using BET, XRD, TPR and SEM. The catalyst selected was an unpromoted Co/Al2O3 catalyst. FT synthesis runs on the 20cm3 reactor at Aston were conducted for 48 hours. Permanent gases and light hydrocarbons (C1-C5) were analysed in an online GC-TCD/FID at hourly intervals. The liquid hydrocarbons collected were analyzed offline using GC-MS for determination of fuel composition. The parameter study showed that CO conversion and liquid hydrocarbon yields increase with increasing reactor pressure up to around 8 bar, above which the effect of pressure is small. The parameters that had the most significant influence on CO conversion, product selectivity and liquid hydrocarbon yields were reactor temperature and catalyst loading. The preferred reaction conditions identified for this research were: T = 230ºC, P = 10 bar, H2/CO = 2.0, WHSV = 2.2 h-1, and catalyst loading = 2.0g. Operation in the low range of pressures studied resulted in low CO conversions and liquid hydrocarbon yields, indicating that low pressure BTL-FT operation may not be industrially viable as the trade off in lower CO conversions and once-through liquid hydrocarbon product yields has to be carefully weighed against the potential cost savings resulting from process operation at lower pressures.