38 resultados para Glial Cell
em Aston University Research Archive
Resumo:
The rodent ventrobasal (VB) thalamus receives sensory inputs from the whiskers and projects to the cortex, from which it receives reciprocal excitatory afferents. Much is known about the properties and functional roles of these glutamatergic inputs to thalamocortical neurons in the VB, but no data are available on how these afferents can affect thalamic glial cells. In this study, we used combined electrophysiological recordings and intracellular calcium ([Ca(2+)](i)) imaging to investigate glial cell responses to synaptic afferent stimulation. VB thalamus glial cells can be divided into two groups based on their [Ca(2+)](i) and electrophysiological responses to sensory and corticothalamic stimulation. One group consists of astrocytes, which stain positively for S100B and preferentially load with SR101, have linear current-voltage relations and low input resistance, show no voltage-dependent [Ca(2+)](i) responses, but express mGluR5-dependent [Ca(2+)](i) transients following stimulation of the sensory and/or corticothalamic excitatory afferent pathways. Cells of the other glial group, by contrast, stain positively for NG2, and are characterized by high input resistance, the presence of voltage-dependent [Ca(2+)](i) elevations and voltage-gated inward currents. There were no synaptically induced [Ca(2+)](i) elevations in these cells under control conditions. These results show that thalamic glial cell responses to synaptic input exhibit different properties to those of thalamocortical neurons. As VB astrocytes can respond to synaptic stimulation and signal to neighbouring neurons, this glial cell organization may have functional implications for the processing of somatosensory information and modulation of behavioural state-dependent thalamocortical network activities.
Resumo:
Many pesticides are used increasingly in combinations during crop protection and their stability ensures the presence of such combinations in foodstuffs. The effects of three fungicides, pyrimethanil, cyprodinil and fludioxonil, were investigated together and separately on U251 and SH-SY5Y cells, which can be representative of human CNS glial and neuronal cells respectively. Over 48h, all three agents showed significant reductions in cellular ATP, at concentrations that were more than tenfold lower than those which significantly impaired cellular viability. The effects on energy metabolism were reflected in their marked toxic effects on mitochondrial membrane potential. In addition, evidence of oxidative stress was seen in terms of a fall in cellular thiols coupled with increases in the expression of enzymes associated with reactive species formation, such as GSH peroxidase and superoxide dismutase. The glial cell line showed significant responsiveness to the toxin challenge in terms of changes in antioxidant gene expression, although the neuronal SH-SY5Y line exhibited greater vulnerability to toxicity, which was reflected in significant increases in caspase-3 expression, which is indicative of the initiation of apoptosis. Cyprodinil was the most toxic agent individually, although oxidative stress-related enzyme gene expression increases appeared to demonstrate some degree of synergy in the presence of the combination of agents. This report suggests that the impact of some pesticides, both individually and in combinations, merits further study in terms of their impact on human cellular health.
Resumo:
Neuronal intermediate filament (IF) inclusion disease (NIFID) is characterized by neuronal loss, neuronal cytoplasmic IF-positive inclusions (NI), swollen neurons (SN), and a glial cell reaction. We studied the spatial correlations between the clusters of NI, SN, and glial cells in four gyri of the temporal lobe (superior temporal gyrus, inferior temporal gyrus, lateral occipitotemporal gyrus, and parahippocampal gyrus) in four cases of NIFID. The densities of histological features (per 50x250 μ sample field) were as follows: NI (mean = 0.41, range 0.28-0.68), SN (mean = 1.41, range 0.47-2.65), glial cell nuclei (mean = 5.21, range 3.63-8.17). The NI and the SN were positively correlated in half of the brain regions examined, the correlations being present at the smallest field size (50x250 μm). The NI were also positively or negatively correlated with the glial cell nuclei in different areas, the negative correlations being present at the smallest field size. Glial cell nuclei were positively or negatively correlated with the SN in different brain areas, mainly at the larger field sizes (400x250 and 800x250 μm). The spatial correlation between the clusters of NI and SN in the cortex suggests their development within the same columns of cells. At first, the glial cell reaction is also confined to these columns but later becomes more generally distributed across the cortex. © Springer-Verlag 2004.
Resumo:
About 10% of patients with Creutzfeldt-Jakob syndrome (disease) (CJD) exhibit visual symptoms at presentation and approximately 50% during the course of the disease. The objectives of the present study were to determine, in two subtypes of CJD, viz., sporadic CJD (sCJD) and variant CJD (vCJD), the degree of pathological change in the primary visual cortex (area V1) and the extent to which pathology in V1 may influence visual function. The vacuolation (‘spongiform change’), surviving neurons, glial cell nuclei, and deposits of prion protein (PrP) were quantified in V1 obtained post-mortem in nine cases of sCJD and eleven cases of vCJD. In sCJD, the vacuoles and PrP deposits were regularly distributed along the cortex parallel to the pia mater in clusters with a mean dimension from 450 to 1000 µm. Across the cortex, the vacuolation was most severe in laminae II/III and the glial cell reaction in laminae V/VI. Surviving neurons were most abundant in laminae II/III while PrP deposition either affected all laminae equally or was maximal in lamina II/III. In vCJD, the vacuoles and diffuse PrP deposits were distributed relatively uniformly parallel to the pia mater while the florid deposits were consistently distributed in regular clusters. Across V1, the vacuoles either exhibited a bimodal distribution or were uniformly distributed. The diffuse PrP deposits occurred most frequently in laminae II/III while the florid deposits were more generally distributed. The data suggest that in both sCJD and vCJD, pathological changes in area V1 may affect the processing of visual information in laminae II/III and its transmission from V1 to V2 and to subcortical visual areas. In addition, the data suggest an association in sCJD between the developing pathology and the functional domains of V1 while in vCJD the pathology is more uniformly distributed. These changes could be a factor in the development of poor visual acuity, visual field defects, cortical blindness, diplopia, and vertical gaze palsy that have been observed in Creutzfeldt-Jakob syndrome.
Resumo:
OBJECTIVE: To determine the laminar distribution of the pathological changes in the cerebral cortex in progressive supranuclear palsy (PSP). METHOD: The distribution of the abnormally enlarged neurons (EN), surviving neurons, neurofibrillary tangles (NFT), glial inclusions (GI), tufted astrocytes (TA), and neuritic plaques (NP) were studied across the cortex in tau immunolabeled sections of frontal and temporal cortex in 8 cases of PSP. RESULTS: The distribution of the NFT was highly variable with no consistent pattern of laminar distribution. The GI were distributed either in the lower laminae or uniformly across the cortex. Surviving neurons exhibited either a density peak in the upper laminae or a bimodal distribution was present with density peaks in the upper and lower laminae. The EN and glial cell nuclei were distributed primarily in the lower cortical laminae. There were positive correlations between the densities of the EN and glial cell nuclei and negative correlations between the surviving neurons and glial cells. No correlations were present between the densities of the NFT and GI. CONCLUSION: Cortical pathology in PSP predominantly affects the lower laminae but may spread to affect the upper laminae in some cases. The NFT and GI may have different laminar distributions and gliosis occurs concurrently with neuronal enlargement.
Resumo:
Pathological changes in striate (B17, V1) and extrastriate (B18, V2) visual cortex were studied in variant Creutzfeldt-Jakob disease (vCJD). No differences in densities of vacuoles or surviving neurons were observed in B17 and B18 but densities of glial cell nuclei and deposits of prion protein (PrP) were greater in B18. PrP deposit densities in B17 and B18 were positively correlated. Diffuse deposit density in B17 was negatively correlated with the density of surviving neurons in B18. The vacuoles either exhibited a density peak in laminae II/III and V/VI or were more uniformly distributed across the laminae. Diffuse deposits were most frequent in laminae II/III and florid deposits more generally distributed. In B18, the surviving neurons were more consistently bimodally distributed and the glial cell nuclei most abundant in laminae V/VI than in B17. Hence, both striate and extrastriate visual cortex is affected by the pathology of vCJD, the pathological changes being most severe in B18. Neuronal degeneration in B18 appears to be associated with diffuse PrP deposit formation in B17. These data suggest that the short cortico-cortical connections between B17 and B18 and the pathways to subcortical visual areas are compromised in vCJD.
Resumo:
OBJECTIVE: To determine the distribution of the pathological changes in the neocortex in multiple-system atrophy (MSA). METHOD: The vertical distribution of the abnormal neurons (neurons with enlarged or atrophic perikarya), surviving neurons, glial cytoplasmic inclusions (GCI) and neuronal cytoplasmic inclusions (NI) were studied in alpha-synuclein-stained material of frontal and temporal cortex in ten cases of MSA. RESULTS: Abnormal neurons exhibited two common patterns of distribution, viz., density was either maximal in the upper cortex or a bimodal distribution was present with a density peak in the upper and lower cortex. The NI were either located in the lower cortex or were more uniformly distributed down the cortical profile. The distribution of the GCI varied considerably between gyri and cases. The density of the glial cell nuclei was maximal in the lower cortex in the majority of gyri. In a number of gyri, there was a positive correlation between the vertical densities of the abnormal neurons, the total number of surviving neurons, and the glial cell nuclei. The vertical densities of the GCI were not correlated with those of the surviving neurons or glial cells but the GCI and NI were positively correlated in a small number of gyri. CONCLUSION: The data suggest that there is significant degeneration of the frontal and temporal lobes in MSA, the lower laminae being affected more significantly than the upper laminae. Cortical degeneration in MSA is likely to be secondary to pathological changes occurring within subcortical areas.
Resumo:
The laminar distribution of the vacuolation ('spongiform change'), surviving neurons, glial cell nuclei, and prion protein (PrP) deposits was studied in the frontal, parietal and temporal cortex in 11 cases of sporadic Creutzfeldt-Jakob disease (CJD). The distribution of the vacuolation was mainly bimodal with peaks of density in the upper and lower cortical laminae. The density of surviving neurons was greatest in the upper cortex while glial cell nuclei were distributed largely in the lower cortex. PrP deposits exhibited either a bimodal distribution or reached a maximum density in the lower cortex. The vertical density of the vacuoles was positively correlated with the surviving neurons in 12/44 of cortical areas studied, with glial cell nuclei in 16/44 areas and with PrP deposition in 15/28 areas. PrP deposits were positively correlated with glial cell nuclei in 12/31 areas. These results suggest that in sporadic CJD: (1) the lower cortical laminae are the most affected by the pathological changes; (2) the development of the vacuolation may precede that of the extracellular PrP deposits and the glial cell reaction; and (3) the pathological changes may develop initially in the lower cortical laminae and spread to affect the upper cortical laminae. © 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Objective: To quantify the neuronal and glial cell pathology in the hippocampus and the parahippocampal gyrus (PHG) of 8 cases of progressive supranuclear palsy (PSP). Material: tau-immunolabeled sections of the temporal lobe of 8 diagnosed cases of PSP. Method: The densities of lesions were measured in the PHG, CA sectors of the hippocampus and the dentate gyrus (DG) and studied using spatial pattern analysis. Results: Neurofibrillary tangles (NFT) and abnormally enlarged neurons (EN) were most frequent in the PHG and in sector CA1 of the hippocampus, oligodendroglial inclusions (“coiled bodies”) (GI) in the PHG, subiculum, sectors CA1 and CA2, and neuritic plaques (NP) in sectors CA2 and CA4. The DG was the least affected region. Vacuolation and GI were observed in the alveus. No tufted astrocytes (TA) were observed. Pathological changes exhibited clustering, the lesions often exhibiting a regular distribution of the clusters parallel to the tissue boundary. There was a positive correlation between the degree of vacuolation in the alveus and the densities of NFT in CA1 and GI in CA1 and CA2. Conclusion: The pathology most significantly affected the output pathways of the hippocampus, lesions were topographically distributed, and hippocampal pathology may be one factor contributing to cognitive decline in PSP.
Resumo:
The density and spatial distribution of the vacuoles, glial cell nuclei and glial cytoplasmic inclusions (GCI) were studied in the white matter of various cortical and subcortical areas in 10 cases of multiple system atrophy (MSA). Vacuolation was more prevalent in subcortical than cortical areas and especially in the central tegmental tract. Glial cell nuclei widespread in all areas of the white matter studied; overall densities of glial cell nuclei being significantly greater in the central tegmental tract and frontal cortex compared with areas of the pons. The GCI were present most consistently in the external and internal capsules, the central tegmental tract and the white matter of the cerebellar cortex. The density of the vacuoles was greater in the MSA brains than in the control brains but glial cell density was similar in both groups. In the majority of areas, the pathological changes were distributed across the white matter randomly, uniformly, or in large diffuse clusters. In most areas, there were no spatial correlations between the vacuoles, glial cell nuclei and GCI. These results suggest: (i) there is significant degeneration of the white matter in MSA characterized by vacuolation and GCI; (ii) the central tegmental tract is affected significantly more than the cortical tracts; (iii) pathological changes are diffusely rather than topographically distributed across the white matter; and (iv) the development of the vacuoles and GCI appear to be unrelated phenomena. © 2007 Japanese Society of Neuropathology.
Resumo:
Objective: To determine the laminar distribution of the pathological changes in the frontal and temporal lobe in neuronal intermediate filament inclusion disease (NIFID). Method: The distribution of the alpha-intenexin-positive neuronal cytoplasmic inclusions (NCI), surviving neurons, swollen achromatic neurons (SN) and glial cell nuclei was studied across the cortex in gyri of the frontal and temporal lobe in 10 cases of NIFID. Results: The distribution of the NCI was highly variable within different gyri, a peak in the upper cortex, a bimodal distribution with peaks of density in the upper and lower laminae, or no significant variation in density across the cortex. The surviving neurons were either bimodally distributed or exhibited no significant change in density across the cortex. The SN and glial cell nuclei were most abundant in the lower cortical laminae. In half of the gyri, variations in density of the NCI across the cortex were positively correlated with the SN. In some gyri, the surviving neurons were positively correlated with the SN and negatively correlated with the glial cell nuclei. In addition, the SN and glial cell nuclei were positively correlated in over half the gyri studied. Conclusion: The data suggest that frontal and temporal lobe degeneration in NIFID characterized by NCI, SN, neuronal loss and gliosis extends across the cortical laminae with considerable variation between cases and gyri. alpha-internexin-positive neurons in the upper laminae appear to be particularly vulnerable. The gliosis appears to be largely correlated with the appearance of SN and with neuronal loss and not related to the NCI.
Resumo:
Ten cases of neuronal intermediate filament inclusion disease (NIFID) were studied quantitatively. The α-internexin positive neurofilament inclusions (NI) were most abundant in the motor cortex and CA sectors of the hippocampus. The densities of the NI and the swollen achromatic neurons (SN) were similar in laminae II/III and V/VI but glial cell density was greater in V/VI. The density of the NI was positively correlated with the SN and the glial cells. Principal components analysis (PCA) suggested that PC1 was associated with variation in neuronal loss in the frontal/temporal lobes and PC2 with neuronal loss in the frontal lobe and NI density in the parahippocampal gyrus. The data suggest: 1) frontal and temporal lobe degeneration in NIFID is associated with the widespread formation of NI and SN, 2) NI and SN affect cortical laminae II/III and V/VI, 3) the NI and SN affect closely related neuronal populations, and 4) variations in neuronal loss and in the density of NI were the most important sources of pathological heterogeneity. © Springer-Verlag 2005.
Resumo:
Neuronal intermediate filament inclusion disease (NIFID) is a new neurodegenerative disease characterized histologically by the presence of neuronal cytoplasmic inclusions (NI) immunopositive for intermediate filament proteins, neuronal loss, swollen achromatic neurons (SN), and gliosis. We studied the spatial patterns of these pathological changes parallel to the pia mater in gyri of the temporal lobe in four cases of NIFID. Both the NI and SN occurred in clusters that were regularly distributed parallel to the pia mater, the cluster sizes of the SN being significantly greater than those of the NI. In a significant proportion of areas studied, there was a spatial correlation between the clusters of NI and those of the SN and with the density of the surviving neurons. In addition, the clusters of surviving neurons were negatively correlated (out of phase) with the clusters of glial cell nuclei. The pattern of clustering of these histological features suggests that there is degeneration of the cortico-cortical projections in NIFID leading to the formation of NI and SN within the same vertical columns of cells. The glial cell reaction may be a response to the loss of neurons rather than to the appearance of the NI or SN.
Resumo:
Objective: To quantify the densities of neurofilament inclusions (NI), swollen achromatic neurons, surviving neurons and glial cells in a novel neurofilamentopathy neurofilament inclusion disease (NID). Material: Sectionsof temporal lobe from 4 cases of NID stained with an antibody raised to neurofilament proteins. Method: Densities of the pathological changes were estimated in the various gyri of the temporal lobe, hippocampus and dentate gyrus. Results: Densities of the NI and swollen achromatic neurons (SN) were greater in the cerebral cortical gyri than in the hippocampus and dentate gyrus. Lesion density was relatively constant between gyri and between the CA sectors of the hippocampus. In cortical gyri, the density of the NI, SN and glial cell nuclei was greater in laminae II/III than laminae V/VI. Densities of the NI were negatively correlated with the surviving neurons and positively correlated with the glial cell nuclei. The density of the SN was positively correlated with that of the surviving neurons. Conclusion: The pathology of NID morphologically resembles that of Pick's disease (PD) and corticobasal degeneration (CBD), but there are distinct differences between NID and these disorders supporting the hypothesis that NID is a novel and unique type of neurodegenerative disease.
Resumo:
Purpose. To determine the degree of pathological change in the primary visual cortex (area V1) in patients with Creutzfeldt-Jakob disease. Method. The vacuolation, surviving neurons, glial cells, and deposits of prion protein were quantified in area V1 obtained postmortem in nine cases of the sporadic type of Creutzfeldt-Jakob disease. Results. Variations in the density of glial cells and in prion protein deposition were particularly evident between patients. In the upper and lower cortical laminae, vacuoles and prion protein deposits were regularly distributed in clusters with a mean dimensions of 450 to 1000 µm. Vacuolation in area V1 was most severe in lamina III and the glial cell reaction in lamina V or VI. Surviving neurons were most abundant in lamina II or III, whereas prion protein deposition either affected all laminae equally or was maximal in lamina II or III. Conclusion. The data suggest that pathological changes in area V1 in sporadic type of Creutzfeldt-Jakob disease may affect the transmission of visual information from area V1 to V2 and to subcortical visual areas. In addition, the data suggest an association between the developing pathology and the functional domains of area V1.