6 resultados para Geodesic convexity

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data envelopment analysis (DEA) is defined based on observed units and by finding the distance of each unit to the border of estimated production possibility set (PPS). The convexity is one of the underlying assumptions of the PPS. This paper shows some difficulties of using standard DEA models in the presence of input-ratios and/or output-ratios. The paper defines a new convexity assumption when data includes a ratio variable. Then it proposes a series of modified DEA models which are capable to rectify this problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on a simple convexity lemma, we develop bounds for different types of Bayesian prediction errors for regression with Gaussian processes. The basic bounds are formulated for a fixed training set. Simpler expressions are obtained for sampling from an input distribution which equals the weight function of the covariance kernel, yielding asymptotically tight results. The results are compared with numerical experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is concerned with exact solutions of Einstein's field equations of general relativity, in particular, when the source of the gravitational field is a perfect fluid with a purely electric Weyl tensor. General relativity, cosmology and computer algebra are discussed briefly. A mathematical introduction to Riemannian geometry and the tetrad formalism is then given. This is followed by a review of some previous results and known solutions concerning purely electric perfect fluids. In addition, some orthonormal and null tetrad equations of the Ricci and Bianchi identities are displayed in a form suitable for investigating these space-times. Conformally flat perfect fluids are characterised by the vanishing of the Weyl tensor and form a sub-class of the purely electric fields in which all solutions are known (Stephani 1967). The number of Killing vectors in these space-times is investigated and results presented for the non-expanding space-times. The existence of stationary fields that may also admit 0, 1 or 3 spacelike Killing vectors is demonstrated. Shear-free fluids in the class under consideration are shown to be either non-expanding or irrotational (Collins 1984) using both orthonormal and null tetrads. A discrepancy between Collins (1984) and Wolf (1986) is resolved by explicitly solving the field equations to prove that the only purely electric, shear-free, geodesic but rotating perfect fluid is the Godel (1949) solution. The irrotational fluids with shear are then studied and solutions due to Szafron (1977) and Allnutt (1982) are characterised. The metric is simplified in several cases where new solutions may be found. The geodesic space-times in this class and all Bianchi type 1 perfect fluid metrics are shown to have a metric expressible in a diagonal form. The position of spherically symmetric and Bianchi type 1 space-times in relation to the general case is also illustrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently introduced Surface Nanoscale Axial Photonics (SNAP) is based on whispering gallery modes circulating around the optical FIber surface and undergoing slow axial propagation. In this paper we develop the theory of propagation of whispering gallery modes in a SNAP microresonator, which is formed by nanoscale asymmetric perturbation of the FIber translation symmetry and called here a nanobump microresonator. The considered modes are localized near a closed stable geodesic situated at the FIber surface. A simple condition for the stability of this geodesic corresponding to the appearance of a high Q-factor nanobump microresonator is found. The results obtained are important for engineering of SNAP devices and structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A generalized Drucker–Prager (GD–P) viscoplastic yield surface model was developed and validated for asphalt concrete. The GD–P model was formulated based on fabric tensor modified stresses to consider the material inherent anisotropy. A smooth and convex octahedral yield surface function was developed in the GD–P model to characterize the full range of the internal friction angles from 0° to 90°. In contrast, the existing Extended Drucker–Prager (ED–P) was demonstrated to be applicable only for a material that has an internal friction angle less than 22°. Laboratory tests were performed to evaluate the anisotropic effect and to validate the GD–P model. Results indicated that (1) the yield stresses of an isotropic yield surface model are greater in compression and less in extension than that of an anisotropic model, which can result in an under-prediction of the viscoplastic deformation; and (2) the yield stresses predicted by the GD–P model matched well with the experimental results of the octahedral shear strength tests at different normal and confining stresses. By contrast, the ED–P model over-predicted the octahedral yield stresses, which can lead to an under-prediction of the permanent deformation. In summary, the rutting depth of an asphalt pavement would be underestimated without considering anisotropy and convexity of the yield surface for asphalt concrete. The proposed GD–P model was demonstrated to be capable of overcoming these limitations of the existing yield surface models for the asphalt concrete.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce a whispering gallery-mode (WGM) nanobump microresonator (NBMR) and develop its theory. This microresonator is formed by an asymmetric nanoscale-high deformation of the translationally symmetric optical fiber surface, which is employed in fabrication of surface nanoscale axial photonics (SNAP) structures. It is shown that an NBMR causes strong localization of WGMs near a closed ray (geodesic) at the fiber surface, provided that this ray is stable. Our theory explains and describes the experimentally observed localization of WGMs by NBMRs and is useful for the design and fabrication of SNAP devices.