11 resultados para Generated Granule Cells
em Aston University Research Archive
Resumo:
In the cerebellar cortex, forms of both long-term depression (LTD) and long-term potentiation (LTP) can be observed at parallel fibre (PF) - Purkinje cell (PC) synapses. A presynaptic variant of cerebellar LTP can be evoked in PCs by raised frequency stimulation (RFS) of parallel fibre at 4-16Hz for 15s. This form of LTP is dependent on protein kinase A (PKA) and nitric oxide (NO), and can spread to distant synapses. Application of an extracellular NO scavenger, cPTIO, was found to prevent the spread of LTP to distant PF synapses in rat cerebellar slices. G-substrate may be an important mediator of the NO-dependent pathway for LTD. 8-16Hz RFS of PFs without a high concentration of calcium chelator in the postsynaptic cell evokes LTD. In cerebellar slices from wild-type and transgenic, G-substrate knockout mice, 8Hz RFS was applied to PFs, with a low concentration of postsynaptic calcium chelator. In PCs from wild-type mice, LTD predominated, whereas in those from transgenic mice LTP predominated. The ascending axon (AA) segment of the granule cell axon forms synapses with PCs as well as the PF segment. PPF and fluctuation analysis of EPSCs in rat PCs confirmed that the release sites of AA synapses have a greater probability of transmitter release than PF synapses. Furthermore, AA release sites have greater mean quantal amplitude than PF synapses, which is not due to a different type of postsynaptic receptor. AA synapses were found to have limited capacity to undergo the presynaptic variant of LTP, and were potentiated less than PF synapses in the presence of the PKA activator, forskolin. AA synapses also did not undergo the postsynaptic form of LTP, nor LTD induced by conjunctive stimulation of climbing fibre and PF.
Resumo:
Dapsone (DDS) hydroxylamine metabolites cause oxidative stress- linked adverse effects in patients, such as methemoglobin formation and DNA damage. This study evaluated the ameliorating effect of the antioxidant resveratrol (RSV) on DDS hydroxylamine (DDSNHOH) mediated toxicity in vitro using human erythrocytes and lymphocytes. The antioxidant mechanism was also studied using in-silico methods. In addition, RSV provided intracellular protection by inhibiting DNA damage in human lymphocytes induced by DDS-NHOH. However, whilst pretreatment with RSV (10-1000 μM significantly attenuated DDS-NHOH-induced methemoglobinemia, but it was not only significantly less effective than methylene blue (MET), but also post-treatment with RSV did not reverse methemoglobin formation, contrarily to that observed with MET. DDS-NHOH inhibited catalase (CAT) activity and reactive oxygen species (ROS) generation, but did not alter superoxide dismutase (SOD) activity in erythrocytes. Pretreatment with RSV did not alter these antioxidant enzymes activities in erythrocytes treated with DDS-NHOH. Theoretical calculations using density functional theory methods showed that DDS-NHOH has a pro-oxidant effect, whereas RSV and MET have antioxidant effect on ROS. The effect on methemoglobinemia reversion for MET was significantly higher than that of RSV. These data suggest that the pretreatment with resveratrol may decrease heme-iron oxidation and DNA damage through reduction of ROS generated in cells during DDS therapy.
Resumo:
In patients with Pick's disease (PD), high densities of tau positive Pick bodies (PB) have been observed within the granule cell layer of the dentate gyrus. This study investigated the spatial patterns of PB along the granule cell layer in coronal sections of the hippocampus in eight patients with PD. In all patients, there was evidence of clustering of PB within the granule cell layer; however, there was considerable variation in the pattern of clustering. In five patients, the clusters of PB were regularly distributed along the dentate gyms, and in two of these patients, the smaller clusters were aggregated into larger superclusters. In three patients, a single large cluster of PB, more than 1200 μm in diameter, was present. Clustering of PB may reflect a primary degenerative process within the granule cells or the degeneration of pathways that project to the dentate gyrus.
Resumo:
The densities of Pick bodies (PB), Pick cells (PC), senile plaques (SP) and neurofibrillary tangles (NFT) in the frontal and temporal lobe were determined in ten patients diagnosed with Pick's disease (PD). The density of PB was significantly higher in the dentate gyrus granule cells compared with the cortex and the CA sectors of the hippocampus. Within the hippocampus, the highest densities of PB were observed in sector CA1. PC were absent in the dentate gyrus and no significant differences in PC density were observed in the remaining brain regions. With the exception of two patients, the densities of SP and NFT were low with no significant differences in mean densities between cortical regions. In the hippocampus, the density of NFT was greatest in sector CA1. PB and PC densities were positively correlated in the frontal cortex but no correlations were observed between the PD and AD lesions. A principal components analysis (PCA) of the neuropathological variables suggested that variations in the densities of SP in the frontal cortex, temporal cortex and hippocampus were the most important sources of heterogeneity within the patient group. Variations in the densities of PB and NFT in the temporal cortex and hippocampus were of secondary importance. In addition, the PCA suggested that two of the ten patients were atypical. One patient had a higher than average density of SP and one familial patient had a higher density of NFT but few SP.
Resumo:
The dentate gyrus (DG) is an important part of the hippocampal formation and is believed to be involved in a variety of brain functions including episodic and spatial memory and the exploration of novel environments. In several neurodegenerative disorders, significant pathology occurs in the DG which may be involved in the development of clinical dementia. Based on the abundance of pathological change, neurodegenerative disorders could be divided into three groups: (1) those in which high densities of neuronal cytoplasmic inclusions (NCI) were present in DG granule cells, e.g., Pick’s disease (PiD), frontotemporal lobar degeneration with TDP-43-immunoreactive inclusions (FTLD-TDP), and neuronal intermediate filament inclusion disease (NIFID), (2) those in which aggregated protein deposits were distributed throughout the hippocampal formation including the molecular layer of the DG, e.g., Alzheimer’s disease (AD), Down’s syndrome (DS), and variant Creutzfeldt-Jakob disease (vCJD), and (3) those in which in there was significantly less pathology in the DG, e.g., Parkinson’s disease dementia (PD-Dem), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), multiple system atrophy (MSA), and sporadic CJD (sCJD). Hence, DG pathology varied significantly among disorders which could contribute to differences in clinical dementia. Pathological differences among disorders could reflect either differential vulnerability of the DG to specific molecular pathologies or variation in the degree of spread of pathological proteins into the hippocampal formation from adjacent regions.
Resumo:
The dentate gyrus (DG) is an important part of the hippocampal formation and is believed to be involved in a variety of brain functions including episodic and spatial memory and the exploration of novel environments. In several neurodegenerative disorders, significant pathology occurs in the DG which may be involved in the development of clinical dementia. Based on the abundance of pathological change, neurodegenerative disorders can be divided into three groups: (1) those in which high densities of neuronal cytoplasmic inclusions (NCI) are present in DG granule cells, e.g., Pick’s disease (PiD), frontotemporal lobar degeneration with TDP-43-immunoreactive inclusions (FTLD-TDP), and neuronal intermediate filament inclusion disease (NIFID), (2) those in which aggregated protein deposits are distributed throughout the hippocampal formation including the molecular layer of the DG, e.g., Alzheimer’s disease (AD), Down’s syndrome (DS), and variant Creutzfeldt-Jakob disease (vCJD), and (3) those in which in there is significantly less pathology in the DG, e.g., Parkinson’s disease dementia (PD-Dem), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), multiple system atrophy (MSA), and sporadic CJD (sCJD). Hence, DG pathology varies significantly among disorders which could contribute to differences in clinical dementia. Pathological differences among disorders could reflect either differential vulnerability of the DG to specific molecular pathologies or variation in the degree of spread of pathological proteins into the hippocampal formation from adjacent regions.
Resumo:
The hippocampus (HC) and adjacent gyri are implicated in dementia in several neurodegenerative disorders. To compare HC pathology among disorders, densities of ‘signature’ pathological lesions were measured at a standard location in eight brain regions of 12 disorders. Principal components analysis of the data suggested that the disorders could be divided into three groups: (1) Alzheimer’s disease (AD), Down’s syndrome (DS), sporadic Creutzfeldt–Jakob disease, and variant Creutzfeldt–Jakob disease in which either β-amyloid (Aβ) or prion protein deposits were distributed in all sectors of the HC and adjacent gyri, with high densities being recorded in the parahippocampal gyrus and subiculum; (2) Pick’s disease, sporadic frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions, and neuronal intermediate filament inclusion disease in which relatively high densities of neuronal cytoplasmic inclusions were present in the dentate gyrus (DG) granule cells; and (3) Parkinson’s disease dementia, dementia with Lewy bodies, progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy in which densities of signature lesions were relatively low. Variation in density of signature lesions in DG granule cells and CA1 were the most important sources of neuropathological variation among disorders. Hence, HC and adjacent gyri are differentially affected in dementia reflecting either variation in vulnerability of hippocampal neurons to specific molecular pathologies or in the spread of pathological proteins to the HC. Information regarding the distribution of pathology could ultimately help to explain variations in different cognitive domains, such as memory, observed in various disorders.
Resumo:
Historically, CGRP receptors have been classified as CGRP(1) or CGRP(2) subtypes, chiefly depending on their affinity for the antagonist CGRP(8-37). It has been shown that the complex between calcitonin receptor-like receptor (CRLR or CL) and receptor activity modifying protein (RAMP) 1 provides a molecular correlate for the CGRP(1) receptor; however this does not explain the range of affinities seen for CGRP(8-37) in isolated tissues. It is suggested that these may largely be explained by a combination of methodological factors and CGRP-responsive receptors generated by CL and RAMP2 or RAMP3 and complexes of RAMPs with the calcitonin receptor.
Resumo:
In many parts of the world, plants are directly utilised for their medicinal properties. Traditional medicine from Pakistan, India and the Far East is well documented and its history is embedded in folklore. It has been documented that an aqueous extract of the desert shrub, Fagonia cretica, is a popular treatment for breast cancer in Pakistan. The administration of an aqueous extract of Fagonia cretica is reported effective at reducing tumour size and improving the quality of life of breast cancer patients, is well tolerated and does not exhibit adverse effects like vomiting, diarrhoea or alopecia which are common side effects of standard cytotoxic therapy. In the past, many pharmacologically active and chemotherapeutic compounds have been isolated from plants which subsequently have proven to be successful in clinical trials and been used as primary compounds in therapeutic regimes. Fagonia cretica has historical use as a treatment for breast cancer, yet there is little scientific evidence which shows chemotherapeutic potential towards breast tumours. Preparation and analysis of an aqueous extract of Fagonia cretica may reveal novel chemotherapeutic agents that can be used to effectively target cancer cells. An understanding of the mechanism of any activity may improve our understanding of cancer cell biology and reveal novel therapeutic targets. This thesis describes for the first time that an aqueous extract of Fagonia cretica shows potent in vitro cytotoxic activity towards breast cancer epithelial cell lines which was not seen towards normal mammary epithelial cells. Elucidation and characterisation of the cytotoxic mechanism was undertaken by analysing DNA damage, cell cycle status, apoptosis, metabolic state and expression of transcription factors and their targets. Finally, methods for the isolation and identification of active compound(s) were developed using various chromatographic techniques. An aqueous extract of Fagonia cretica was able to reduce cell viability significantly in two phenotypically different breast cancer cell lines (MCF-7 and MDA-MB-231). This activity was markedly reduced in normal mammary epithelial cells (HMEpC). Further investigation into the mode of action revealed that extract treatment induced cell cycle arrest and apoptosis in both MCF-7 and MDA-MB-231 cell lines. This coincided with the formation of DNA double stranded breaks and the DNA repair marker ?-H2AX. In MCF-7 cells, ATM/ATR activation resulted in increased p53 expression and of its transcriptional targets p21 and bax, suggesting a role for a p53-mediated response. Furthermore, inhibition of extract-induced p53 expression with siRNA reduced the cytotoxic effect against MCF-7 cells. Extract treatment was also associated with increased FOXO3a expression in MCF-7 and MDA-MB-231 cells. In the absence of functional p53, siRNA knockdown of extract-induced FOXO3a expression was completely abrogated, suggesting that FOXO3a plays a vital role in extract-induced cytotoxicity. Isolation and characterisation of the active compound(s) within the extract was attempted using liquid chromatography and mass spectrometry in conjunction with a cell viability assay. Multiple fractionations generated an active fraction that contained four major compounds as detected by mass spectrometry. However, none of these compounds were identified structurally or chemically due to constraints within the methodology.
Resumo:
In this paper, we study generation of Bessel beams from semiconductor lasers with high beam propagation parameter M2 and their utilization for optical trapping and manipulation of microscopic particles including living cells. The demonstrated optical tweezing with diodegenerated Bessel beams paves the way to replace their vibronic-generated counterparts for a range of applications towards novel lab-on-a-chip configurations.
Resumo:
In this paper, we demonstrate, for the first time to the best of our knowledge, utilization of Bessel beams generated from a semiconductor laser for optical trapping and manipulation of microscopic particles including living cells. © 2014 OSA.