4 resultados para Gene Deletion Causes
em Aston University Research Archive
Resumo:
Incontinentia Pigmenti (IP, OMIM#308300) is a rare X-linked genomic disorder (about 1,400 cases) that affects the neuroectodermal tissue and Central Nervous System (CNS). The objective of this study was to describe the cognitive-behavioural profile in children in order to plan a clinical intervention to improve their quality of life. A total of 14 girls (age range: from 1 year and 2 months to 12 years and 10 months) with IP and the IKBKG/NEMO gene deletion were submitted to a cognitive assessment including intelligence scales, language and visuo-spatial competence tests, learning ability tests, and a behavioural assessment. Five girls had severe to mild intellectual deficiencies and the remaining nine had a normal neurodevelopment. Four girls were of school age and two of these showed no intellectual disability, but had specific disabilities in calculation and arithmetic reasoning. This is the first description of the cognitive-behavioural profile in relation to developmental age. We stress the importance of an early assessment of learning abilities in individuals with IP without intellectual deficiencies to prevent the onset of any such deficit.
Resumo:
Administration of calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) can cause facial flushing, suggesting that the peptides may be important in hot flushes experienced particularly by post-menopausal women. Five studies have measured plasma CGRP concentrations in post-menopausal women who suffer from flushes; all demonstrated elevations of between 170% and 320% over control. Three of the studies showed a temporal relationship between flushes and CGRP elevation. A further study has shown that CGRP is elevated in the urine of women who suffer from flushes. Only a single study has investigated flushes in pre-menopausal women; no elevation of CGRP was observed. Flushes are also experienced by men undergoing androgen deprivation therapy. Whilst one study failed to find any increase in CGRP in the urine of these individuals, a small study has identified an increase in plasma CGRP. No studies have investigated plasma AM or the related peptide, intermedin/AM2. Overall, there is good evidence to show that flushes in post-menopausal women are accompanied by an increase in CGRP. CGRP could act centrally on the thermoregulatory centre of the hypothalamus as well as peripherally to cause vasodilation and sweating. However, it remains to be demonstrated that the elevated CGRP causes flushes. Recently developed CGRP antagonists provide an opportunity to test this hypothesis. If they are successful, they may represent a useful alternative to oestrogen replacement therapy.
Resumo:
Since the earliest descriptions of Alzheimer's disease (AD), many theories have been advanced as to its cause. These include: (1) exacerbation of aging, (2) degeneration of anatomical pathways, including the cholinergic and cortico-cortical pathways, (3) an environmental factor such as exposure to aluminium, head injury, or malnutrition, (4) genetic factors including mutations of amyloid precursor protein (APP) and presenilin (PSEN) genes and allelic variation in apolipoprotein E (Apo E), (5) mitochondrial dysfunction, (6) a compromised blood brain barrier, (7) immune system dysfunction, and (8) infectious agents. This review discusses the evidence for and against each of these theories and concludes that AD is a multifactorial disorder in which genetic and environmental risk factors interact to increase the rate of normal aging ('allostatic load'). The consequent degeneration of neurons and blood vessels results in the formation of abnormally aggregated 'reactive' proteins such as ß-amyloid (Aß) and tau. Gene mutations influence the outcome of age-related neuronal degeneration to cause early onset familial AD (EO-FAD). Where gene mutations are absent and a combination of risk factors present, Aß and tau only slowly accumulate not overwhelming cellular protection systems until later in life causing late-onset sporadic AD (LO-SAD). Aß and tau spread through the brain via cell to cell transfer along anatomical pathways, variation in the pathways of spread leading to the disease heterogeneity characteristic of AD.
Resumo:
Familial frontotemporal lobar degeneration with transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP) is most commonly caused by progranulin (GRN) gene mutation. To characterize cortical degeneration in these cases, changes in density of the pathology across the cortical laminae of the frontal and temporal lobe were studied in seven cases of FTLD-TDP with GRN mutation using quantitative analysis and polynomial curve fitting. In 50% of gyri studied, neuronal cytoplasmic inclusions (NCI) exhibited a peak of density in the upper cortical laminae. Most frequently, neuronal intranuclear inclusions (NII) and dystrophic neurites (DN) exhibited a density peak in lower and upper laminae, respectively, glial inclusions (GI) being distributed in low densities across all laminae. Abnormally enlarged neurons (EN) were distributed either in the lower laminae or were more uniformly distributed across the cortex. The distribution of all neurons present varied between cases and regions, but most commonly exhibited a bimodal distribution, density peaks occurring in upper and lower laminae. Vacuolation primarily affected the superficial laminae and density of glial cell nuclei increased with distance across the cortex from pia mater to white matter. The densities of the NCI, GI, NII, and DN were not spatially correlated. The laminar distribution of the pathology in GRN mutation cases was similar to previously reported sporadic cases of FTLD-TDP. Hence, pathological changes initiated by GRN mutation, and by other causes in sporadic cases, appear to follow a parallel course resulting in very similar patterns of cortical degeneration in FTLD-TDP.