25 resultados para Gearing Lubrication
em Aston University Research Archive
Resumo:
The work described in this thesis is concerned with mechanisms of contact lens lubrication. There are three major driving forces in contact lens design and development; cost, convenience, and comfort. Lubrication, as reflected in the coefficient of friction, is becoming recognised as one of the major factors affecting the comfort of the current generation of contact lenses, which have benefited from several decades of design and production improvements. This work started with the study of the in-eye release of soluble macromolecules from a contact lens matrix. The vehicle for the study was the family of CIBA Vision Focus® DAILIES® daily disposable contact lenses which is based on polyvinyl alcohol (PVA). The effective release of linear soluble PVA from DAILIES on the surface of the lens was shown to be beneficial in terms of patient comfort. There was a need to develop a novel characterisation technique in order to study these effects at surfaces; this led to the study of a novel tribological technique, which allowed the friction coefficients of different types of contact lenses to be measured reproducibly at genuinely low values. The tribometer needed the ability to accommodate the following features: (a) an approximation to eye lid load, (b) both new and ex-vivo lenses, (c) variations in substrate, (d) different ocular lubricants (including tears). The tribometer and measuring technique developed in this way was used to examine the surface friction and lubrication mechanisms of two different types of contact lenses: daily disposables and silicone hydrogels. The results from the tribometer in terms of both mean friction coefficient and the friction profiles obtained allowed various mechanisms used for surface enhancement now seen in the daily disposable contact lens sector to be evaluated. The three major methods used are: release of soluble macromolecules (such as PVA) from the lens matrix, irreversible surface binding of a macromolecule (such as polyvinyl pyrrolidone) by charge transfer and the simple polymer adsorption (e.g. Pluoronic) at the lens surface. The tribological technique was also used to examine the trends in the development of silicone hydrogel contact lenses. The focus of the principles in the design of silicone hydrogels has now shifted from oxygen permeability, to the improvement of surface properties. Presently, tribological studies reflect the most effective in vitro method of surface evaluation in relation to the in-eye comfort.
Resumo:
With the competitive challenge facing business today, the need to keep cost down and quality up is a matter of survival. One way in which wire manufacturers can meet this challenge is to possess a thorough understanding of deformation, friction and lubrication during the wire drawing process, and therefore to make good decisions regarding the selection and application of lubricants as well as the die design. Friction, lubrication and die design during wire drawing thus become the subject of this study. Although theoretical and experimental investigations have been being carried out ever since the establishment of wire drawing technology, many problems remain unsolved. It is therefore necessary to conduct further research on traditional and fundamental subjects such as the mechanics of deformation, friction, lubrication and die design in wire drawing. Drawing experiments were carried out on an existing bull-block under different cross-sectional area reductions, different speeds and different lubricants. The instrumentation to measure drawing load and drawing speed was set up and connected to the wire drawing machine, together with a data acquisition system. A die box connected to the existing die holder for using dry soap lubricant was designed and tested. The experimental results in terms of drawing stress vs percentage area reduction curves under different drawing conditions were analysed and compared. The effects on drawing stress of friction, lubrication, drawing speed and pressure die nozzle are discussed. In order to determine the flow stress of the material during deformation, tensile tests were performed on an Instron universal test machine, using the wires drawn under different area reductions. A polynomial function is used to correlate the flow stress of the material with the plastic strain, on which a general computer program has been written to find out the coefficients of the stress-strain function. The residual lubricant film on the steel wire after drawing was examined both radially and longitudinally using an SEM and optical microscope. The lubricant film on the drawn wire was clearly observed. Therefore, the micro-analysis by SEM provides a way of friction and lubrication assessment in wire drawing.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Purpose: Meibomian-derived lipid secretions are well characterised but their subsequent fate in the ocular environment is less well understood. Phospholipids are thought to facilitate the interface between aqueous and lipid layers of the tear film and to be involved in ocular lubrication processes. We have extended our previous studies on phospholipid levels in the tear film to encompass the fate of polar and non-polar lipids in progressive accumulation and aging processes on both conventional and silicone-modified hydrogel lenses. This is an important aspect of the developing understanding of the role of lipids in the clinical performance of silicone hydrogels. Method: Several techniques were used to identify lipids in the tear film. Mass-spectrometric methods included Agilent 1100-based liquid chromatography coupled to mass spectrometry (LCMS) and Perkin Elmer gas chromatography mass spectrometry (GCMS). Thin layer chromatography (TLC) was used for separation of lipids on the basis of increasing solvent polarity. Routine assay of lipid extractions from patient-worn lenses was carried out using a Hewlett Packard 1090 liquid chromatograph coupled to both uv and Agilent 1100 fluorescence detection. A range of histological together with optical, and electron microscope techniques was used in deposit analysis. Results: Progressive lipid uptake was assessed in various ways, including: composition changes with wear time, differential lipid penetrate into the lens matrix and, particularly, the extent to which lipids become unextractable as a function of wear time. Solvent-based separation and HPLC gave consistent results indicating that the polarity of lipid classes decreased as follows: phospholipids/fatty acids > triglycerides > cholesterol/cholesteryl esters. Tear lipids were found to show autofluorescence—which underpinned the value of fluorescence microscopy and fluorescence detection coupled with HPLC separation. The most fluorescent lipids were found to be cholesteryl esters; histological techniques coupled with fluorescence microscopy indicated that white spots (’’jelly bumps’’) formed on silicone hydrogel lenses contain a high proportion of cholesteryl esters. Lipid profiles averaged for 30 symptomatic and 30 asymptomatic contact lens wearers were compiled. Peak classes were split into: cholesterol (C), cholesteryl esters (CE), glycerides (G), polar fatty acids/phospholipids (PL). The lipid ratio for ymptomatic/symptomatic was 0.6 ± 0.1 for all classes except one—the cholesterol ratio was 0.2 ± 0.05. Significantly the PL ratio was no different from that of any other class except cholesterol. Chromatography indicated that: lipid polarity decreased with depth of penetration and that lipid extractability decreased with wear time. Conclusions: Meibomian lipid composition differs from that in the tear film and on worn lenses. Although the same broad lipid classes were obtained by extraction from all lenses and all patients studied, quantities vary with wear and material. Lipid extractability diminishes with wear time regardless of the use of cleaning regimes. Dry eye symptoms in contact lens wear are frequently linked to lipid layer behaviour but seem to relate more to total lipid than to specific composition. Understanding the detail of lipid related processes is an important element of improving the clinical performance of materials and care solutions.
Resumo:
Magnetic levitation bearings eliminate friction, wear and the need for lubrication and so have high speed capability and potential for vibration control. One noteworthy development in the realm of magnetic levitation is the self-bearing or bearingless motor - an electromagnetic machine that supports its own rotor by way of magnetic forces generated by windings on its stator. Accordingly, various winding schemes have been proposed to accomplish the task of force production. This thesis proposes a novel concept of winding based on a bridge connection for polyphase self-bearing rotating electrical machines with the following advantages: • the connection uses a single set of windings and thus power loss is relatively low when compared with self-bearing motors with conventional dual set of windings. • the motor and levitation controls are segregated such that only one motor inverter is required for the normal torque production and levitation forces are produced by using auxiliary power supplies of relatively low current and voltage rating. The usual way of controlling the motor is retained. • there are many variant winding schemes to meet special needs. • independent power supplies for levitation control offer redundancy for fault tolerance. This thesis dwells specifically on the conceptual design and implementation of the proposed single set of windings scheme. The new connection has been verified to exhibit characteristics of a self-bearing motor via coupled-field finite element analysis: results are crosschecked analytically. Power loss and other aspects such as cost, design implementation are compared to support the newly proposed connection as a potential alternative to present designs.
Exploring civil servant resistance to M-government:a story of transition and opportunities in Turkey
Resumo:
The concept of mobility, related to technology in particular, has evolved dramatically over the last two decades including: (i) hardware ranging from walkmans to Ipods, laptops to netbooks, PDAs to 3G mobile phone; (ii) software supporting multiple audio and video formats driven by ubiquitous mobile wireless access, WiMax, automations such as radio frequency ID tracking and location aware services. Against the background of increasing budget deficit, along with the imperative for efficiency gains, leveraging ICT and mobility promises for work related tasks, in a public administration context, in emerging markets, point to multiple possible paths. M-government transition involve both technological changes and adoption to deliver government services differently (e.g. 24/7, error free, anywhere to the same standards) but also the design of digital strategies including possibly competing m-government models, the re-shaping of cultural practices, the creation of m-policies and legislations, the structuring of m-services architecture, and progress regarding m-governance. While many emerging countries are already offering e-government services and are gearing-up for further m-government activities, little is actually known about the resistance that is encountered, as a reflection of civil servants' current standing, before any further macro-strategies are deployed. Drawing on the resistance and mobility literature, this chapter investigates how civil servants' behaviors, in an emerging country technological environment, through their everyday practice, react and resist the influence of m-government transition. The findings points to four main type of resistance namely: i) functional resistance; ii) ideological resistance; iii) market driven resistance and iv) geographical resistance. Policy implication are discussed in the specific context of emerging markets. © 2011, IGI Global.
Resumo:
Pin on disc wear machines were used to study the boundary lubricated friction and wear of AISI 52100 steel sliding partners. Boundary conditions were obtained by using speed and load combinations which resulted in friction coefficients in excess of 0.1. Lubrication was achieved using zero, 15 and 1000 ppm concentrations of an organic dimeric acid additive in a hydrocarbon base stock. Experiments were performed for sliding speeds of 0.2, 0.35 and 0.5 m/s for a range of loads up to 220 N. Wear rate, frictional force and pin temperature were continually monitored throughout tests and where possible complementary methods of measurement were used to improve accuracy. A number of analytical techniques were used to examine wear surfaces, debris and lubricants, namely: Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), Powder X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), optical microscopy, Back scattered Electron Detection (BSED) and several metallographic techniques. Friction forces and wear rates were found to vary linearly with load for any given combination of speed and additive concentration. The additive itself was found to act as a surface oxidation inhibitor and as a lubricity enhancer, particularly in the case of the higher (1000 ppm) concentration. Wear was found to be due to a mild oxidational mechanism at low additive concentrations and a more severe metallic mechanism at higher concentrations with evidence of metallic delamination in the latter case. Scuffing loads were found to increase with increasing additive concentration and decrease with increasing speed as would be predicted by classical models of additive behaviour as an organo-metallic soap film. Heat flow considerations tended to suggest that surface temperature was not the overriding controlling factor in oxidational wear and a model is proposed which suggests oxygen concentration in the lubricant is the controlling factor in oxide growth and wear.
Resumo:
This project is targeted towards establishing the durability and mechanisms of wear involved in the use of 5.25 inch magnetic floppy diskettes with particular reference to the media manufactured by the Minnesota Mining and Manufacturing Company, 3M Center, St. Paul, Minnesota, USA. In the present work most stress has been laid on the presentation of the conclusions drawn from the results obtained using samples produced specifically for this project. These samples were produced on the pilot plant at 3MTM, St. Paul, USA and are identified by the code 58759-4 with sample numbers SR1 to SR4 each with different lubrication conditions. All of the categories have been produced with four different surface roughnesses by varying the degree of burnishing. It has been found that the mechanisms of wear are related to a fatigue process. Some surprises have been noted in respect of the value of burnishing compared to the observations made elsewhere. Good reasons for these observed differences have been noted, however, and it will be shown that these are merely superficial and not concerned with wear of any real type. The present work reports the effects of the changes in the media's lubrication status and its surface topography as well as presenting evidence for the suggested wear mechanisms.
Resumo:
A fundamental if poorly understood problem that hydrogels display is the tendency of these contact lens materials to dehydrate, causing certain complications of the corneal epithelium. However, recent studies have indicated that the evaporation rate of water from different hydrogel lenses is the same and the severity of conditions such as corneal staining is controlled by the states of water in the material. A study was therefore undertaken which concluded that increased corneal desiccating staining occurred as the proportion of water existing in the bound state decreased. The possibility of using dehydrated hydrogels as packaging materials with desiccating properties has also been investigated. As hydrogels have a high affinity for water they have adequate ability to function as a moisture scavenger in an enclosed atmosphere. It was concluded that this ability is maximised by a high total water content and an increase in the proportion of this water existing in the bound state for the material when it is fully hydrated. N-vinyl pyrrolidone has a low reactivity in vinyl polymerisation reactions which results in polymers with local domains of the same chemical type which can lead to deposition. As contact lenses comprising of this monomer are susceptible to deposition, a monomer with a higher reactivity in vinyl polymerisations is acryloylmorpholine and its incorporation in favour of NVP is encouraged. Unfortunately a large proportion of high EWC hydrogels are mechanically weak and attempts to increase this property by increasing hydrophobicity or cross-linking results in a decrease in EWC. Monomers with the potential to carry a positive charge were incorporated into a high EWC, AMO-HEMA copolymer and the physical properties were investigated. Although EWC increased, mechanical properties decreased only slightly. Therefore simultaneous incorporation of a positively charged monomer and a negatively charged monomer was investigated. The resulting copolymers showed increased water content and increased initial modulus. A technique for measuring the coefficient of friction of contact lenses during lubrication has been developed.
Resumo:
Studies suggest that frontotemporal lobar degeneration with transactive response (TAR) DNA-binding protein of 43kDa (TDP-43) proteinopathy (FTLD-TDP) is heterogeneous with division into four or five subtypes. To determine the degree of heterogeneity and the validity of the subtypes, we studied neuropathological variation within the frontal and temporal lobes of 94 cases of FTLD-TDP using quantitative estimates of density and principal components analysis (PCA). A PCA based on the density of TDP-43 immunoreactive neuronal cytoplasmic inclusions (NCI), oligodendroglial inclusions (GI), neuronal intranuclear inclusions (NII), and dystrophic neurites (DN), surviving neurons, enlarged neurons (EN), and vacuolation suggested that cases were not segregated into distinct subtypes. Variation in the density of the vacuoles was the greatest source of variation between cases. A PCA based on TDP-43 pathology alone suggested that cases of FTLD-TDP with progranulin (GRN) mutation segregated to some degree. The pathological phenotype of all four subtypes overlapped but subtypes 1 and 4 were the most distinctive. Cases with coexisting motor neuron disease (MND) or hippocampal sclerosis (HS) also appeared to segregate to some extent. We suggest: 1) pathological variation in FTLD-TDP is best described as a ‘continuum’ without clearly distinct subtypes, 2) vacuolation was the single greatest source of variation and reflects the ‘stage’ of the disease, and 3) within the FTLD-TDP ‘continuum’ cases with GRN mutation and with coexisting MND or HS may have a more distinctive pathology.
Resumo:
Heat pumps are becoming increasingly popular, but poor electricity generating efficiency limits the potential energy savings of electrically powered units. Thus the work reported in this thesis concerns the development of a range of gas engine driven heat pumps for industrial and commercial heating applications, which recover heat from the prime mover, normally rejected to waste. Despite the convenience of using proprietary engine heat recovery packages, investigations have highlighted the necessity to ensure the engine and the heat recovery equipment are compatible. A problem common •to all air source heat pumps is the formation of frost on the evaporator, which must be removed periodically, with the expenditure of energy, to ensure the continued operation of the plant. An original fluidised bed defrosting mechanism is proposed, which prevents the build-up of this frost, and also improves system performance. Criticisms have been levelled against the rotary sliding vane compressor, in particular the effects of lubrication, which is essential. This thesis compares the rotary sliding vane compressor with other machines, and concludes that many of these criticisms are unfounded. A confidential market survey indicates an increasing demand for heat pumps up to and including 1990, and the technical support needed to penetrate this market is presented. Such support includes the development of a range of modular gas engine driven heat pumps, and a computer aided design for the selection of the optimum units. A case study of a gas engine driven heat pump for a swimming pool application which provided valuable experience is included.
Resumo:
Recent developments in aerostatic thrust bearings have included: (a) the porous aerostatic thrust bearing containing a porous pad and (b) the inherently compensated compliant surface aerostatic thrust bearing containing a thin elastomer layer. Both these developments have been reported to improve the bearing load capacity compared to conventional aerostatic thrust bearings with rigid surfaces. This development is carried one stage further in a porous and compliant aerostatic thrust bearing incorporating both a porous pad and an opposing compliant surface. The thin elastomer layer forming the compliant surface is bonded to a rigid backing and is of a soft rubber like material. Such a bearing is studied experimentally and theoretically under steady state operating conditions. A mathematical model is presented to predict the bearing performance. In this model is a simplified solution to the elasticity equations for deflections of the compliant surface. Account is also taken of deflections in the porous pad due to the pressure difference across its thickness. The lubrication equations for flow in the porous pad and bearing clearance are solved by numerical finite difference methods. An iteration procedure is used to couple deflections of the compliant surface and porous pad with solutions to the lubrication equations. Comparisons between experimental results and theoretically predicted bearing performance are in good agreement. However these results show that the porous and compliant aerostatic thrust bearing performance is lower than that of a porous aerostatic thrust bearing with a rigid surface in place of the compliant surface. This discovery is accounted to the recess formed in the bearing clearance by deflections of the compliant surface and its effect on flow through the porous pad.