7 resultados para Garment cutting.
em Aston University Research Archive
Resumo:
This work is undertaken in the attempt to understand the processes at work at the cutting edge of the twist drill. Extensive drill life testing performed by the University has reinforced a survey of previously published information. This work demonstrated that there are two specific aspects of drilling which have not previously been explained comprehensively. The first concerns the interrelating of process data between differing drilling situations, There is no method currently available which allows the cutting geometry of drilling to be defined numerically so that such comparisons, where made, are purely subjective. Section one examines this problem by taking as an example a 4.5mm drill suitable for use with aluminium. This drill is examined using a prototype solid modelling program to explore how the required numerical information may be generated. The second aspect is the analysis of drill stiffness. What aspects of drill stiffness provide the very great difference in performance between short flute length, medium flute length and long flute length drills? These differences exist between drills of identical point geometry and the practical superiority of short drills has been known to shop floor drilling operatives since drilling was first introduced. This problem has been dismissed repeatedly as over complicated but section two provides a first approximation and shows that at least for smaller drills of 4. 5mm the effects are highly significant. Once the cutting action of the twist drill is defined geometrically there is a huge body of machinability data that becomes applicable to the drilling process. Work remains to interpret the very high inclination angles of the drill cutting process in terms of cutting forces and tool wear but aspects of drill design may already be looked at in new ways with the prospect of a more analytical approach rather than the present mix of experience and trial and error. Other problems are specific to the twist drill, such as the behaviour of the chips in the flute. It is now possible to predict the initial direction of chip flow leaving the drill cutting edge. For the future the parameters of further chip behaviour may also be explored within this geometric model.
Resumo:
The thesis deals with a research programme in which the cutting performance of a new generation of ceramic cutting tool material is evaluated using the turning process. In part one, the performance of commercial Kyon 2000 sialon ceramic inserts is studied when machining a hardened alloy steel under a wide range of cutting conditions. The aim is to formulate a pattern of machining behaviour in which tool wear is related to a theoretical interpretation of the temperatures and stresses generated by the chip-tool interaction. The work involves a correlation of wear measurement and metallographic examination of the wear area with the measurable cutting data. Four main tool failure modes are recognised: (a) flank and crater wear (b) grooving wear (c) deformation wear and (d) brittle failure Results indicate catastrophic edge breakdown under certain conditions. Accordingly in part two, the edge geometry is modified to give a double rake tool; a negative/positive combination. The results are reported for a range of workpiece materials under orthogonal cutting conditions. Significant improvements in the cutting performance are achieved. The improvements are explained by a study of process parameters; cutting forces, chip thickness ratio, chip contact length, temperature distribution, stress distribution and chip formation. In part three, improvements in tool performance are shown to arise when the edge chamfer on a single rake tool is modified. Under optimum edge chamfer conditions a substantial increase in tool life is obtained compared with the commercial cutting geometry.
Resumo:
This thesis presents an approach to cutting dynamics during turning based upon the mechanism of deformation of work material around the tool nose known as "ploughing". Starting from the shearing process in the cutting zone and accounting for "ploughing", new mathematical models relating turning force components to cutting conditions, tool geometry and tool vibration are developed. These models are developed separately for steady state and for oscillatory turning with new and worn tools. Experimental results are used to determine mathematical functions expressing the parameters introduced by the steady state model in the case of a new tool. The form of these functions are of general validity though their coefficients are dependent on work and tool materials. Good agreement is achieved between experimental and predicted forces. The model is extended on one hand to include different work material by introducing a hardness factor. The model provides good predictions when predicted forces are compared to present and published experimental results. On the other hand, the extension of the ploughing model to taming with a worn edge showed the ability of the model in predicting machining forces during steady state turning with the worn flank of the tool. In the development of the dynamic models, the dynamic turning force equations define the cutting process as being a system for which vibration of the tool tip in the feed direction is the input and measured forces are the output The model takes into account the shear plane oscillation and the cutting configuration variation in response to tool motion. Theoretical expressions of the turning forces are obtained for new and worn cutting edges. The dynamic analysis revealed the interaction between the cutting mechanism and the machine tool structure. The effect of the machine tool and tool post is accounted for by using experimental data of the transfer function of the tool post system. Steady state coefficients are corrected to include the changes in the cutting configuration with tool vibration and are used in the dynamic model. A series of oscillatory cutting tests at various conditions and various tool flank wear levels are carried out and experimental results are compared with model—predicted forces. Good agreement between predictions and experiments were achieved over a wide range of cutting conditions. This research bridges the gap between the analysis of vibration and turning forces in turning. It offers an explicit expression of the dynamic turning force generated during machining and highlights the relationships between tool wear, tool vibration and turning force. Spectral analysis of tool acceleration and turning force components led to define an "Inertance Power Ratio" as a flank wear monitoring factor. A formulation of an on—line flank wear monitoring methodology is presented and shows how the results of the present model can be applied to practical in—process tool wear monitoring in • turning operations.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
High precision manufacturers continuously seek out disruptive technologies to improve the quality, cost, and delivery of their products. With the advancement of machine tool and measurement technology many companies are ready to capitalise on the opportunity of on-machine measurement (OMM). Coupled with business case, manufacturing engineers are now questioning whether OMM can soon eliminate the need for post-process inspection systems. Metrologists will however argue that the machining environment is too hostile and that there are numerous process variables which need consideration before traceable measurement on-the-machine can be achieved. In this paper we test the measurement capability of five new multi-axis machine tools enabled as OMM systems via on-machine probing. All systems are tested under various operating conditions in order to better understand the effects of potentially significant variables. This investigation has found that key process variables such as machine tool warm-up and tool-change cycles can have an effect on machine tool measurement repeatability. New data presented here is important to many manufacturers whom are considering utilising their high precision multi-axis machine tools for both the creation and verification of their products.
Resumo:
Purpose – The purpose of this paper is to constructively discuss the meaning and nature of (theoretical) contribution in accounting research, as represented by Lukka and Vinnari (2014) (hereafter referred to as LV). The authors aim is to further encourage debate on what constitutes management accounting theory (or theories) and how to modestly clarify contributions to the extant literature. Design/methodology/approach – The approach the authors take can be seen as (a)n interdisciplinary literature sourced analysis and critique of the movement’s positioning and trajectory” (Parker and Guthrie, 2014, p. 1218). The paper also draws upon and synthesizes the present authors and other’s contributions to accounting research using actor network theory. Findings – While a distinction between domain and methods theories … may appear analytically viable, it may be virtually impossible to separate them in practice. In line with Armstrong (2008), the authors cast a measure of doubt on the quest to significantly extend theoretical contributions from accounting research. Research limitations/implications – Rather than making (apparently) grandiose claims about (theoretical) contributions from individual studies, the authors suggest making more modest claims from the research. The authors try to provide a more appropriate and realistic approach to the appreciation of research contributions. Originality/value – The authors contribute to the debate on how theoretical contributions can be made in the accounting literature by constructively debating some views that have recently been outlined by LV. The aim is to provide some perspective on the usefulness of the criteria suggested by these authors. The authors also suggest and highlight (alternative) ways in which contributions might be discerned and clarified.
Resumo:
Surface finish is one of the most relevant aspects of machining operations, since it is one of the principle methods to assess quality. Also, surface finish influences mechanical properties such as fatigue behavior, wear, corrosion, etc. The feed, the cutting speed, the cutting tool material, the workpiece material and the cutting tool wear are some of the most important factors that affects the surface roughness of the machined surface. Due to the importance of the martensitic 416 stainless steel in the petroleum industry, especially in valve parts and pump shafts, this material was selected to study the influence of the feed per tooth and cutting speed on tool wear and surface integrity. Also the influence of tool wear on surface roughness is analyzed. Results showed that high values of roughness are obtained when using low cutting speed and feed per tooth and by using these conditions tool wear decreases prolonging tool life. Copyright © 2009 by ASME.