2 resultados para Gall midges
em Aston University Research Archive
Resumo:
The hepatotoxicity of the industrial solvent and investigational anti-tumour agent N-methylformamide (NMF, HOCNHCH3) and several structural analogues was assessed in mice. NMF and its ethyl analogue (NEF) were equipotent hepatotoxins causing extensive centrilobular necrosis and damage to the gall bladder. Pretreatment of mice with SKF525A did not influence the toxicity of these N-alkylformamides. Replacement of the formyl hydrogen of NMF with deuterium or methyl significantly reduced its hepatotoxicity. An in vitro model for the study of the toxicity and metabolism of N-alkylformamides was developed using isolated mouse hepatocytes. The cytotoxicity of NMF in vitro was concentration-dependent with maximal toxicity being achieved at concentrations of 5mM or above. The cytotoxic potential of related amides correlated well with their in vivo hepatotoxic potential. Pretreatment of mice with buthionine sulphoximine (BSO), which depleted hepatocytic levels of glutathione to 15% of control values, exacerbated the cytotoxicity of NMF towards the hepatocytes. NMF (1mM or above), incubated with isolated mouse hepatocytes, depleted intracellular glutathione levels to 26% of control values within 4h. Depletion of glutathione was quantitatively matched by the formation of a carbamoylating metabolite. Metabolism was dependent on the concentration of NMF and was drastically reduced in incubations of hepatocytes isolated from mice pretreated with BSO. The carbamoylating metabolite, S-(N-methylcarbamoyl)-glutathione (SMG), was identified in vitro using FAB-MS. The generation of SMG was subject to a large primary H/D kinetic isotope effect when the formyl hydrogen was replaced with deuterium. Likewise, glutathione depletion and metabolite formation were reduced or abolished by the deuteration or methylation of the formyl moiety of NMF. NEF, like NMF, depleted hepatocytic glutathione levels and was metabolised to a carbamoylating metabolite. Radioactivity derived from 14C-NMF and 14C-NEF, labelled in the alkyl moieties, was found to be irreversibly associated with microsomal protein on incubation in vitro. Binding was dependent on the presence of NADPH and was mostly abolished in the presence of reduced glutathione. SKF525A failed to influence the binding.
Resumo:
Obesity has become a global epidemic. Approximately 15% of the world population is either overweight or obese. This figure rises to 75% in many westernised countries including the United Kingdom. Health costs in the UK to treat obesity and associated disease are conservatively estimated at 6% of the National Health Service (NHS) budget equating to 3.33 billion Euros. Excess adiposity, especially in visceral depots, increases the risk of type 2 diabetes, cardiovascular disease, gall stones, hypertension and cancer. Type 2 diabetes mellitus accounts for >90% of all cases of diabetes of which the majority can be attributed to increased adiposity, and approximately 70% of cardiovascular disease has been attributed to obesity in the US. Weight loss reduces risk of these complications and in some cases can eliminate the condition. However, weight loss by conventional non-medicated methods is often unsuccessful or promptly followed by weight regain. This thesis has investigated adipocytes development and adipokine signalling with a view to enhance the understanding of tissue functionality and to identify possible targets or pathways for therapeutic intervention. Adipocyte isolation from human tissue samples was undertaken for these investigative studies, and the methodology was optimised. The resulting isolates of pre-adipocytes and mature adipocytes were characterised and evaluated. Major findings from these studies indicate that mature adipocytes undergo cell division post terminal differentiation. Gene studies indicated that subcutaneous adipose tissue exuded greater concentrations and fluctuations of adipokine levels than visceral adipose tissue, indicating an important adiposensing role of subcutaneous adipose tissue. It was subsequently postulated that the subcutaneous depot may provide the major focus for control of overall energy balance and by extension weight control. One potential therapeutic target, 11ß-hydrosteroid dehydrogenase (11ß-HSD1) was investigated, and prospective inhibitors of its action were considered (BVT1, BVT2 and AZ121). Selective reduction of adiposity of the visceral depot was desired due to its correlation with the detrimental effects of obesity. However, studies indicated that although the visceral depot tissue was not unaffected, the subcutaneous depot was more susceptible to therapeutic inhibition by these compounds. This was determined to be a potentially valuable therapeutic intervention in light of previous postulations regarding long-term energy control via the subcutaneous tissue depot.