5 resultados para GT-rich DNA

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Affinity purification of plasmid DNA is an attractive option for the biomanufacture of therapeutic plasmids, which are strictly controlled for levels of host protein, DNA, RNA, and endotoxin. Plasmid vectors are considered to be a safer alternative than viruses for gene therapy, but milligram quantities of DNA are required per dose. Previous affinity approaches have involved triplex DNA formation and a sequence-specific zinc finger protein. We present a more generically applicable protein-based approach, which exploits the lac operator, present in a wide diversity of plasmids, as a target sequence. We used a GFP/His-tagged Lacl protein, which is precomplexed with the plasmid, and the resulting complex was immobilized on a solid support (TALON resin). Ensuing elution gives plasmid DNA, in good yield (>80% based on recovered starting material, 35-50% overall process), free from detectable RNA and protein and with minimal genomic DNA contamination. Such an affinity-based process should enhance plasmid purity and ultimately, after appropriate development, may simplify the biomanufacturing process of therapeutic plasmids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The antitumour imidazotetrazinones are believed to act as prodrugs for the triazene series of alkylating agents, showing a marked pteference for the alkylation of the middle guanine residue in a run of three or more contiguous guanines. However, the. exact nature of the interactions of imidazotetrazinones within the micro~environment of DNA are; as yet unknown. In order to examine such interactions a three pronged approach involving molecular modelling, synthetic chemistry and biological analysis has been undertaken during the course of this project. . Molecular modelling studies have shown that for the 8-carboxamido substituted imidazotetrazinones antitumour activity is dependent upon the. presence of a free NH group which can be involved in the formation of both intramolecular and intermolecular hydrogen bonds, and the presence of a non-bulky substituent with a small negative potential . volume. Modelling studies involving the docking of .mitozolomide into the major groove of DNA in the region of a triguanine sequence has shown that a number of hydrogen bonding interactions are feasible. A series of 8-substituted carboxamide derivatives of mitozolomide have been synthesised via the 8-acid chloride and 8-carboxylic acid derivatives including a number of peptide analogues. The peptide derivatives were based upon the key structural features of the helix-turn-helix motif of DNA-binding proteins with a view to developing agents that are capable of binding to DNA with greater selectivity. An examination of the importance of intramolecular hydrogen bonding in influencing the antitumour activity:of :the imidazotetrazinones has led to the synthesis of the novel pyrimido[4',5' :4,3]pyrazolo[5,1-d]-1,2,3,5-tetrazine ring system. In general, in vitro cytotoxicity assays showed that the new derivatives were less active against the TLX5 lymphoma cell line. than the parent compound mitozolomide despite an increased potential for hydrogen bonding interactions. Due to the high reactivity of the: tetrazinone ring system it is difficult to study the interactions between the imidazotetrazinones and DNA. Consequently a number of structural analogues that are stable under physiological conditions have been. prepared based upon the 1,2,3 triazin-4(3H)-one ring system fused with both benzene and pyrazole rings. Although the 3-methylbenzotriazinones failed to antagonise the cytotoxic activity of temozolomide encouraging results with a 3-methylpyrazolotriazinone may suggest the existence of an imidazotetrazinone receptor site within DNA. The potential of guanine rich sequences to promote the alkylating selectivity of imidazotetrazinones by acting as a catalyst for ring cleavage and thereby generation of the alkylating agent was examined. Experiments involving the monitoring: of the rate of breakdown of mitozolomide incubated in the presence of synthetic oIigonucleotides did not reveal any catalytic effect resulting from the DNA. However, it was noted that the breakdown of mitozolomide was dependent upon the type of buffer used in the incubations and this may indeed mask any catalysis by the oligonucleotides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA methylation appears to be involved in the regulation of gene expression. Transcriptionally inactive (silenced) genes normally contain a high proportion of 5-methyl-2'-deoxycytosine residues whereas transcriptionally active genes show much reduced levels. There appears good reason to believe that chemical agents capable of methylating 2'-deoxycytosine might affect gene expression and as a result of hypermethylating promoter regions of cytosine-guanine rich oncogenic sequences, cancer related genes may be silenced. This thesis describes the synthesis of a number of `electrophilic' S-methylsulphonium compounds and assesses their ability to act as molecules capable of methylating cytosine at position 5 and also considers their potential as cytotoxic agents. DNA is methylated in vivo by DNA methyltransferase utilising S-adenoxylmethionine as the methyl donor. This thesis addresses the theory that S-adenoxylmethionine may be replaced as the methyl donor for DNA methytransferase by other sulphonium compounds. S-[3H-methyl]methionine sulphonium iodide was synthesised and experiments to assess the ability of this compounds to transfer methyl groups to cytosine in the presence of DNA methyltransferase were unsuccessful. A proline residue adjacent to a cysteine residue has been identified to a highly conserved feature of the active site region of a large number of prokaryotic DNA methyltransferases. The thesis examines the possibility that short peptides containing the Pro-Cys fragment may be able to facilitate the alkylation of cytosine position 5 by sulphonium compounds. Peptides were synthesised up to 9 amino acids in length but none were shown to exhibit significant activity. Molecular modelling techniques, including Chem-X, Quanta, BIPED and protein structure prediction programs were used to assess any structural similarities that may exist between short peptides containing a Pro-Cys fragment and similar sequences present in proteins. A number of similar structural features were observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enhanced immune responses for DNA and subunit vaccines potentiated by surfactant vesicle based delivery systems outlined in the present study, provides proof of principle for the beneficial aspects of vesicle mediated vaccination. The dehydration-rehydration technique was used to entrap plasmid DNA or subunit antigens into lipid-based (liposomes) or non-ionic surfactant-based (niosomes) dehydration-rehydration vesicles (DRV). Using this procedure, it was shown that both these types of antigens can be effectively entrapped in DRV liposomes and DRV niosomes. The vesicle size of DRV niosomes was shown to be twice the diameter (~2µm) of that of their liposome counterparts. Incorporation of cryoprotectants such as sucrose in the DRV procedure resulted in reduced vesicle sizes while retaining high DNA incorporation efficiency (~95%). Transfection studies in COS 7 cells demonstrated that the choice of cationic lipid, the helper lipid, and the method of preparation, all influenced transfection efficiency indicating a strong interdependency of these factors. This phenomenon has been further reinforced when 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE): cholesteryl 3b- [N-(N’ ,N’ -dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol)/DNA complexes were supplemented with non-ionic surfactants. Morphological analysis of these complexes using transmission electron microscopy and environmental scanning electron microscopy (ESEM) revealed the presence of heterogeneous structures which may be essential for an efficient transfection in addition to the fusogenic properties of DOPE. In vivo evaluation of these DNA incorporated vesicle systems in BALB/c mice showed weak antibody and cell-mediated immune (CMI) responses. Subsequent mock challenge with hepatitis B antigen demonstrated that, 1-monopalmitoyl glycerol (MP) based DRV, is a more promising DNA vaccine adjuvant. Studying these DRV systems as adjuvants for the Hepatitis B subunit antigen (HBsAg) revealed a balanced antibody/CMI response profile on the basis of the HBsAg specific antibody and cytokine responses which were higher than unadjuvated antigen. The effect of addition of MP, cholesterol and trehalose 6,6’-dibehenate (TDB) on the stability and immuno-efficacy of dimethyldioctadecylammonium bromide (DDA) vesicles was investigated. Differential scanning calorimetry showed a reduction in transition temperature of DDA vesicles by ~12°C when incorporated with surfactants. ESEM of MP based DRV system indicated an increased vesicle stability upon incorporation of antigen. Adjuvant activity of these systems tested in C57BL/6j mice against three subunit antigens i.e., mycobacterial fusion protein- Ag85B-ESAT-6, and two malarial antigens - merozoite surface protein-1, (MSP1), and glutamate rich protein, (GLURP) revealed that while MP and DDA based systems induced comparable antibody responses, DDA based systems induced powerful CMI responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The affinity isolation of pre-purified plasmid DNA (pDNA) from model buffer solutions using native and poly(ethylene glycol) (PEG) derivatized zinc finger–GST (Glutathione-S-Transferase) fusion protein was examined in PEG–dextran (DEX) aqueous two-phase systems (ATPSs). In the absence of pDNA, partitioning of unbound PEGylated fusion protein into the PEG-rich phase was confirmed with 97.5% of the PEGylated fusion protein being detected in the PEG phase of a PEG 600–DEX 40 ATPS. This represents a 1322-fold increase in the protein partition coefficient in comparison to the non-PEGylated protein (Kc = 0.013). In the presence of pDNA containing a specific oligonucleotide recognition sequence, the zinc finger moiety of the PEGylated fusion protein bound to the plasmid and steered the complex to the PEG-rich phase. An increase in the proportion of pDNA that partitioned to the PEG-rich phase was observed as the concentration of PEGylated fusion protein was increased. Partitioning of the bound complex occurred to such an extent that no DNA was detected by the picogreen assay in the dextran phase. It was also possible to partition pDNA using a non-PEGylated (native) zinc finger–GST fusion protein in a PEG 1000–DEX 500 ATPS. In this case the native ligand accumulated mainly in the PEG phase. These results indicate good prospects for the design of new plasmid DNA purification methods using fusion proteins as affinity ligands.