4 resultados para GROWTH TEMPERATURE

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The following investigation characterises the interaction between temperature and growth in psychrophilic, mesophilic and thermophilic fungi in order to gain further insight into the physiological mechanisms underlying fungal growth at extreme temperatures. In the first part of the investigation, the effect of environmental temperature on the growth of vegetative mycelium and sporangiospore production and germination was considered in order to determine the cardinal temperatures of these activities in different thermal groups. Subsequent investigations of plasma membrane permeability suggested that plasma membrane structure and function may be significant in establishing both the upper and lower growth temperature limits characteristic of psychrophiles, mesophiles and thermophiles. Analysis of the plasma membrane fractions revealed significant differences in membrane phospholipid composition between these thermal groups and it is suggested that the differing cardinal growth temperatures characteristic of psychrophilic, mesophilic and thermophilic fungi reflect the temperature ranges over which these organisms exhibit levels of plasma membrane fluidity sufficient to maintain membrane-associated growth processes. In contrast, the membrane protein components appear uniform in both character and thermostability and are therefore unlikely to contribute to this phenomenon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The infra-red detector material cadmium mercury telluride can be grown by the technique of Metal Organic Vapour Phase Epitaxy using simple alkyl telluride compounds as the source of tellurium. New tellurium precursors are required in order to overcome handling and toxicity problems and to reduce the growth temperature in preparing the material. A range of diaryltellurium(IV) dicarboxylates and some 2-(2'-pyridyl)phenyl-tellurium(II) and tellurium(IV) monocarboxylates have been synthesised and characterised by infra-red, 13C N.M.R. and mass spectroscopy. Infra-red spectroscopy has been used to determine the mode of bonding of the carboxylate ligand to tellurium. Synthetic methods have been devised for the preparation of diorganotritellurides (R2Te3) and mixed diorganotetrachalcogenides (RTeSeSeTeR). A mechanism for the formation of the tritellurides based on aerobic conditions is proposed. The reaction of ArTe- with (ClCH2CH2)3N leads to tripod-like multidentate ligands (ArTeCH2CH2)3N which form complexes with the ions Hg(II), Cd(II), Cu(I), Pt(II) and Pd(II). Synthetic routes to aryltelluroalkylamines and arylselenoalkylamines are also reported. The crystal structure of 2-(2'-pyridyl)phenyltellurium(II) bromide has been solved in which there are six molecules present within the unit cell. There are no close intermolecular Te---Te interactions and the molecules are stabilised by short Te---N intramolecular contacts. The crystal structure of 2-(2'-pyridyl)phenylselenium(II)-tribromomercurate(II) is also presented. A study of the Raman vibrational spectra of some tellurated azobenzenes and 2-phenylpyridines shows spectra of remarkably far superior quality to those obtained using infra-red spectroscopy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fatigue thresholds and slow crack growth rates have been measured in a powder formed nickel-base superalloy from room temperature to 600°C. Two grain sizes were investigated: 5-12 μm and 50 μm. It is shown that the threshold increases with grain size, and the difference is most pronounced at room temperature. Although crack growth rates increase with temperature in both microstructures, the threshold is only temperature dependent in the material with the larger grain size. It is also only in the latter that the room temperature threshold falls when the load ratio is increased from 0.1 to 0.5. At 600°C the higher load ratio causes a 20% reduction in the threshold irrespective of grain size. The results are discussed in terms of surface roughness and oxide-induced crack closure, the former being critically related to the type of crystallographic crack growth, which is in turn shown to be both temperature and stress intensity dependent. © 1983.