7 resultados para GRAFTING REACTION

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two reactive comonomers, divinyl benzene (DVB) and trimethylolpropane triacrylate (TRIS), were evaluated for their role in effecting the melt free radical grafting reaction of the monomer glycidyl methacrylate (GMA) onto polypropylene (PP). The characteristics of the GMA-grafting systems in the presence and absence of DVB or TRIS were examined and compared in terms of the yield of the grafting reaction and the extent of the main side reactions, namely homopolymerisation of GMA (poly-GMA) and polymer degradation, using different chemical compositions of the reactive systems and processing conditions. In the absence of the comonomers, i.e. in a conventional system, high initiator concentrations of peroxides were typically required to achieve the highest possible GMA grafting levels which were found to be generally low. Concomitantly, both poly-GMA and degradation of the polymer by chain scission takes place with increasing initiator amounts. On the other hand, the presence of a small amount of the comonomers, DVB or Tris, in the GMA-grafting system, was shown to bring about a significant increase in the grafting level paralleled by a large reduction in poly-GMA and PP degradation. In the presence of these highly reactive comonomers, the optimum grafting system requires a much lower concentration of the peroxide initiator and, consequently, would lead to the much lower degree of polymer degradation observed in these systems. The differences in the effects of the presence of DVB and that of TRIS in the grafting systems on the rate of the GMA-grafting and homopolymerisation reactions, and the extent of PP degradation (through melt flow changes), were compared and contrasted with a conventional GMA-grafting system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Glycidyl methacrylate (GMA) was grafted on ethylene-propylene copolymer during melt processing with peroxide initiation in the presence and absence of a more reactive comonomer (coagent), trimethylolpropane triacrylate (Tris). The characteristics of the grafting systems in terms of the grafting reaction yield and the nature and extent of the competing side reactions were examined. The homopolymers of GMA (Poly-GMA) and Tris (Poly-Tris) and the GMA-Tris copolymer (GMA-co-Tris) were synthesized and characterized. In the absence of the coagent, high levels of poly-GMA, which constituted the major competing reaction, was formed, giving rise to low GMA grafting levels. Further, this grafting system resulted in a high extent of gel formation and polymer crosslinking due to the high levels of peroxide needed to achieve optimum GMA grafting and a consequent large drop in the melt index (increased viscosity) of the polymer. In the presence of the coagent, however, the grafting system required much lower peroxide concentration, by almost an order of magnitude, to achieve the optimum grafting yield. The coagent-containing GMA-grafting system has also resulted in a drastic reduction in the extent of all competing reactions, and in particular, the GMA homopolymerization, leading to improved GMA grafting efficiency with no detectable gel or crosslinking. The mechanisms of the grafting reactions, in the presence and absence of Tris, are proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the main objectives of this study was to functionalise various rubbers (i.e. ethylene propylene copolymer (EP), ethylene propylene diene terpolymer (EPDM), and natural rubber (NR)) using functional monomers, maleic anhydride (MA) and glycidyl methacrylate (GMA), via reactive processing routes. The functionalisation of the rubber was carried out via different reactive processing methods in an internal mixer. GMA was free-radically grafted onto EP and EPDM in the melt state in the absence and presence of a comonomer, trimethylolpropane triacrylate (TRlS). To optinuse the grafting conditions and the compositions, the effects of various paranleters on the grafting yields and the extent of side reactions were investigated. Precipitation method and Soxhlet extraction method was established to purifY the GMA modified rubbers and the grafting degree was determined by FTIR and titration. It was found that without TRlS the grafting degree of GMA increased with increasing peroxide concentration. However, grafting was low and the homopolymerisation of GMA and crosslinking of the polymers were identified as the main side reactions competing with the desired grafting reaction for EP and EPDM, respectively. The use of the tri-functional comonomer, TRlS, was shown to greatly enhance the GMA grafting and reduce the side reactions in terms of the higher GMA grafting degree, less alteration of the rheological properties of the polymer substrates and very little formation of polyGMA. The grafting mechanisms were investigated. MA was grafted onto NR using both thermal initiation and peroxide initiation. The results showed clearly that the reaction of MA with NR could be thermally initiated above 140°C in the absence of peroxide. At a preferable temperature of 200°C, the grafting degree was increased with increasing MA concentration. The grafting reaction could also be initiated with peroxide. It was found that 2,5-dimethyl-2,5-bis(ter-butylproxy) hexane (TIOI) was a suitable peroxide to initiate the reaction efficiently above I50°C. The second objective of the work was to utilize the functionalised rubbers in a second step to achieve an in-situ compatibilisation of blends based on poly(ethylene terephthalate) (PET), in particular, with GMA-grafted-EP and -EPDM and the reactive blending was carried out in an internal mixer. The effects of GMA grafting degree, viscosities of GMAgrafted- EP and -EPDM and the presence of polyGMA in the rubber samples on the compatibilisation of PET blends in terms of morphology, dynamical mechanical properties and tensile properties were investigated. It was found that the GMA modified rubbers were very efficient in compatibilising the PET blends and this was supported by the much finer morphology and the better tensile properties. The evidence obtained from the analysis of the PET blends strongly supports the existence of the copolymers through the interfacial reactions between the grafted epoxy group in the GMA modified rubber and the terminal groups of PET in the blends.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Functionalisation of polystyrene, PS, and ethylene-co-propylene-co-cyclopentadiene terpolymer, EPDM, with acrylic acid, AA, in a melt reactive processing procedure, in the presence of peroxide, trigonox 101, and coagents, Divinyl benzene, DVB (for PS), and trimethylolpropane triacrylate, TRIS (for EPDM), were successfully carried out. The level of grafting of the AA, as determined by infrared analysis, was significantly enhanced by the coagents. The grafting reaction of AA takes place simultaneously with homopolymerisation of the monomers, melt degradation and crosslinking reactions of the polymers. The extent of these competing reactions were inferred from measurements of melt flow index and insoluble gel content. Through a judicious use of both the peroxide and the coagent, particularly TRIS, unwanted side reactions were minimized. Five different processing methods were investigated for both functionalisation experiments; the direct addition of the pre-mixed polymer with peroxide and reactive modifiers was found to give optimum condition for grafting. The functionalised PS, F-PS, and EPDM, F-EPD, and maleinised polypropylene carrying a potential antioxidant, N-(4-anilinophenyl maleimide), F-PP were melt blended in binary mixtures of F-PS/F-EPD and F-PP/F-EPD in the presence (or absence) of organic diamines which act as an interlinking agent, e.g, Ethylene Diamine, EDA, and Hexamethylene Diamine, HEMDA. The presence of an interlinking agent, particularly HEMDA shows significant enhancement in the mechanical properties of the blend, suggesting that the copolymer formed has acted as compatibiliser to the otherwise incompatible polymer pairs. The functionalised and amidised blends, F and A-PSIEPDM (SPOI) and F and A-PPIEPDM (SPD2) were subsequently used as compatibiliser concentrates in the corresponding PSIEPDM and PPIEPDM blends containing various weight propotion of the homopolymers. The SPD1 caused general decreased in tensile strength, albeit increased in drop impact strength particularly in blend containing high PS content (80%). The SPD2 was particularly effective in enhancing impact strength in blends containing low weight ratio of PP (<70%). The SPD2 was also a good thermal antioxidant albeit less effective than commercial antioxidant. In all blends the evidence of compatibility was examined by scanning electron microscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main aim of this work was to study the effect of two comonomers, trimethylolpropane trimethacrylate (TRIS) and divinylbenzene (DVB) on the nature and efficiency of grafting of two different monomers, glycidyl methacrylate (GMA) and maleic anhydride (MA) on polypropylene (P) and on natural rubber (NR) using reactive processing methods. Four different peroxides, benzoyl peroxide (BPO), dicumyl peroxide (DCP), 2,5-dimethyl-2,5-bis-(tert-butyl peroxy) hexane (t-101), and 1,1-di(tert-butylperoxy)-3,3,5-trimethyl cyclohexene (T-29B90) were examined as free radical initiators. An appropriate methodology was established and chemical composition and reactive processing parameters were examined and optimised. It was found that in the absence of the coagents DVB and TRIS, the grafting degree of GMA and MA increased with increasing peroxide concentration, but the level of grafting was low and the homopolymerisaton of GMA and the crosslinking of NR or chain scission of PP were identified as the main side reactions that competed with the desired grafting reaction in the polymers. At high concentrations of the peroxide T-101 (>0.02 mr) cross linking of NR and chain scission of PP became dominant and unacceptable. An attempt to add a reactive coagent, e.g. TRIS during grafting of GMA on natural rubber resulted in excessive crosslinking because of the very high reactivity of this comonomer with the C=C of the rubber. Therefore, the use of any multifunctional and highly reactive coagent such as TRIS, could not be applied in the grafting of GAM onto natural rubber. In the case of PP, however, the use of TRIS and DVB was shown to greatly enhance the grafting degree and reduce the chain scission with very little extent of monomer homopolymerisation taking place. The results showed that the grafting degree was increased with increasing GMA and MA concentrations. It was also found that T-101 was a suitable peroxide to initiate the grafting reaction of these monomers on NR and PP and the optimum temperature for this peroxide was =160°C. A very preliminary work was also conducted on the use of the functionalised-PP (f-PP) in the absence and presence of the two comonomers (f-PP-DVB or f-PP-TRIS) for the purpose of compatibilising PP-PBT blends through reactive blending. Examination of the morphology of the blends suggested that an effective compatibilisation has been achieved when using f-PP-DVB and f-PP-TRIS, however more work is required in this area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grafted GMA on EPR samples were prepared in a Thermo-Haake internal mixer by free radical melt grafting reactions in the absence (conventional system; EPR-g-GMA(CONV)) and presence of the reactive comonomer divinyl benzene, DVB (EPR-g-GMA(DVB)). The GMA-homopolymer (poly-GMA), a major side reaction product in the conventional system, was almost completely absent in the DVB-containing system, the latter also resulted in a much higher level of GMA grafting. A comprehensive microstructure analysis of the formed poly-GMA was performed based on one-dimensional H-1 and C-13 NMR spectroscopy and the complete spectral assignments were supported by two-dimensional NMR techniques based on long range two and three bond order carbon-proton couplings from HMBC (Heteronuclear Multiple Bond Coherence) and that of one bond carbon-proton couplings from HSQC (Heteronuclear Single Quantum Coherence), as well as the use of Distortionless Enhancement by Polarization Transfer (DEPT) NMR spectroscopy. The unambiguous analysis of the stereochemical configuration of poly-GMA was further used to help understand the microstructures of the GMA-grafts obtained in the two different free radical melt grafting reactions, the conventional and comonomer-containing systems. In the grafted GMA, in the conventional system (EPR-g-GMA(CONV)), the methylene protons of the GMA were found to be sensitive to tetrad configurational sequences and the results showed that 56% of the GMA sequence in the graft is in atactic configuration and 42% is in syndiotactic configuration whereas the poly-GMA was predominantly syndiotactic. The differences in the microstructures of the graft in the conventional EPR-g-GMA(CONV) and the DVB-containing (EPR-g-GMA(DVB)) systems is also reported (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen-derived free radicals are important agents of tissue injury during ischemia and reperfusion. The aim of this study was to investigate changes in protein and lipid oxidation and antioxidant status in beating heart coronary artery surgery and conventional bypass and to compare oxidative stress parameters between the two bypass methods. Serum lipid hydroperoxide, nitric oxide, protein carbonyl, nitrotyrosine, vitamin E, and β-carotene levels and total antioxidant capacity were measured in blood of 30 patients undergoing beating heart coronary artery surgery (OPCAB, off-pump coronary artery bypass grafting) and 12 patients undergoing conventional bypass (CABG, on-pump coronary artery bypass grafting). In the OPCAB group, nitric oxide and nitrotyrosine levels decreased after reperfusion. Similarly, β-carotene level and total antioxidant capacity also decreased after anesthesia and reperfusion. In the CABG group, nitric oxide and nitrotyrosine levels decreased after ischemia and reperfusion. However, protein carbonyl levels elevated after ischemia and reperfusion. Vitamin E, β-carotene, and total antioxidant capacity decreased after ischemia and reperfusion. Significantly decreased nitration and impaired antioxidant status were seen after reperfusion in both groups. Moreover, elevated protein carbonyls were found in the CABG group. The off-pump procedure is associated with lower degree of oxidative stress than on-pump coronary surgery. © 2011 Pleiades Publishing, Ltd.