7 resultados para GLUCOCORTICOIDS

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loss of adipose tissue in cancer cachexia in mice bearing the MAC16 tumour arises from an increased lipid mobilisation through increased expression of zinc-α2-glycoprotein (ZAG) in white (WAT) and brown (BAT) adipose tissue. Glucocorticoids have been suggested to increase ZAG expression, and this study examines their role in cachexia and the mechanisms involved. In mice bearing the MAC16 tumour, serum cortisol concentrations increased in parallel with weight loss, and the glucocorticoid receptor antagonist RU38486 (25 mg kg-1) attenuated both the loss of body weight and ZAG expression in WAT. Dexamethasone (66 μg kg-1) administration to normal mice produced a six-fold increase in ZAG expression in both WAT and BAT, which was also attenuated by RU38486. In vitro studies using 3T3-L1 adipocytes showed dexamethasone (1.68 μM) to stimulate lipolysis and increase ZAG expression, and both were attenuated by RU38486 (10 μM), anti-ZAG antibody (1 μ gml-1), and the β3-adrenoreceptor (β3-AR) antagonist SR59230A (10 μM). Zinc-α2-glycoprotein also increased its own expression and this was attenuated by SR59230A, suggesting that it was mediated through the β3-AR. This suggests that glucocorticoids stimulate lipolysis through an increase in ZAG expression, and that they are responsible for the increase in ZAG expression seen in adipose tissue of cachectic mice. © 2005 Cancer Research UK.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Up to 50% of cancer patients suffer from a progressive atrophy of adipose tissue and skeletal muscle, called cachexia, resulting in weight loss, a reduced quality of life, and a shortened survival time. Anorexia often accompanies cachexia, but appears not to be responsible for the tissue loss, particularly lean body mass. An increased resting energy expenditure is seen, possibly arising from an increased thermogenesis in skeletal muscle due to an increased expression of uncoupling protein, and increased operation of the Cori cycle. Loss of adipose tissue is due to an increased lipolysis by tumor or host products. Loss of skeletal muscle in cachexia results from a depression in protein synthesis combined with an increase in protein degradation. The increase in protein degradation may include both increased activity of the ubiquitin-proteasome pathway and lysosomes. The decrease in protein synthesis is due to a reduced level of the initiation factor 4F, decreased elongation, and decreased binding of methionyl-tRNA to the 40S ribosomal subunit through increased phosphorylation of eIF2 on the a-subunit by activation of the dsRNA-dependent protein kinase, which also increases expression of the ubiquitin-proteasome pathway through activation of NF?B. Tumor factors such as proteolysis-inducing factor and host factors such as tumor necrosis factor-a, angiotensin II, and glucocorticoids can all induce muscle atrophy. Knowledge of the mechanisms of tissue destruction in cachexia should improve methods of treatment. Copyright © 2009 the American Physiological Society

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose of review: To provide an in-depth analysis of current developments concerning biochemical mechanisms of cellular catabolism. There have been a number of important developments in this area over the past 12 months, particularly with respect to protein catabolism. Recent findings: Protein degradation in a range of catabolic conditions is mediated primarily through the ubiquitin-proteasome proteolytic pathway. Glucocorticoids have been suggested to activate this system in sepsis, while in cancer cachexia a tumour-produced sulphated glycoprotein, proteolysis-inducing factor, induces protein catabolism in skeletal muscle by increasing expression of proteasome subunits and the ubiquitin carrier protein, E214k. Apoptosis may also be important in the loss of muscle protein during the early stage of cachexia. Induction of proteasome expression by glucocorticoids appears to be a direct result of the downregulation of the activity of nuclear factor ?B, while proteolysis-inducing factor acts through 15-hydroxyeicosatetraenoic acid as an intracellular transducer. Summary: Formation of 15-hydroxyeicosatetraenoic acid is inhibited by eicosapentaenoic acid, which has been shown to attenuate the development of weight loss in patients with pancreatic cancer. When eicosapentaenoic acid is combined with an energy dense nutritional supplement, there is an increase in body weight of cachectic cancer patients through an increase in lean body mass. Eicosapentaenoic acid also prevents protein catabolism and activation of the ubiquitin-proteasome proteolytic pathway during acute starvation in mice, suggesting a similar pathway is involved. Thus eicosapentaenoic acid may be effective in the treatment of protein catabolism in conditions other than cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endogenous glucocorticoids and serotonin have been implicated in the pathophysiology of depression, anxiety and schizophrenia. This thesis investigates the potential of downregulating expression of central Type II glucocorticoid receptors (GR) both in vitro and in vivo, with empirically-designed antisense oligodeoxynucleotides (ODN), to characterise GR modulation of 5-HT2A receptor expression using quantitative RT-PCR, Western blot analysis and radioligand binding. The functional consequence of GR downregulation is also determined by measuring 1-(2,5-dimethoxy 4-iodophenyl)-2-amino propane hydrochloride (DOI) mediated 5-HT2A receptor specific headshakes. Using a library of random antisense ODN probes, RNAse H accessibility mapping of T7-primed, in vitro transcribed GR mRNA revealed several potential cleavage sites and identified an optimally effect GR antisense ODN sequence of 21-mer length (GRAS5). In vitro efficacy studies using rat C6 glioma cells showed a 56% downregulation in GR mRNA levels and 80% downregulation in GR protein levels. In the same cells a 29% upregulation in 5-HT2A mRNA levels and 32% upregulation in 5-HT2A protein levels was revealed. This confirmed the optimal nature of the GRAS5 sequence to produce marked inhibition of GR gene expression, and also revealed GR modulation of the 50-HT2A receptor subtype in C6 glioma cells to be a tonic repression of receptor expression. The distribution of a fluorescently-labelled GRAS5 ODN was detected in diverse areas of the rat brain after single ICV administration, although this fluorescence signal was not sustained over a period of 5 days. However, fluorescently-labelled GRAS5 ODN, when formulated in polymer microspheres, showed diverse distribution in the brain which was maintained for 5 days following a single ICV administration. This produced no apparent neurotoxic effects on rat behaviour and hypothalamic-pituitary-adrenal (HPA) axis homeostasis. Furthermore, a single polymer microsphere injection ICV proved to be an effective means of delivering antisense ODNs and this was adopted for the in vivo efficacy studies. In vivo characterisation of GRAS5 revealed marked downregulation of GR mRNA in rat brain regions such as the frontal cortex (26%), hippocampus (35%), and hypothalamus (39%). Downregulation of GR protein was also revealed in frontal cortex (67%), hippocampus (76%), and hypothalamus (80%). In the same animals upregulation of 5-HT2A mRNA levels was shown in frontal cortex (13%), hippocampus (7%), and hypothalamus (5%) while upregulation in 5-HT2A protein levels was shown in frontal cortex (21 %). This upregulation in 5-HT2A receptor density as a result of antisense-mediated inhibition of GR was further confirmed by a 55% increase in DOl-mediated 5-HT2A receptor specific headshakes. These results demonstrate that GR is involved in tonic inhibitory regulation of 5-HT2A receptor expression and function in vivo, thus providing the potential to control 5-HT2A-linked disorders through corticosteroid manipulation. These experiments have therefore established an antisense approach which can be used to investigate pharmacological characteristics of receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adipose tissue of mice bearing a cachexia-inducing murine tumour (MAC16) shows increased expression of zinc-α2-glycoprotein (ZAG), a lipolytic factor thought to be responsible for the increased lipolysis. The anti-cachectic agent eicosapentaenoic acid (EPA) (0.5 g/kg) attenuated the loss of body weight in mice bearing the MAC16 tumour, and this was accompanied by downregulation of ZAG expression in both white and brown adipose tissue, as determined by Western blotting. Glucocorticoids may be responsible for the increased ZAG expression in adipose tissue. Dexamethasone (1.68 μM) stimulated lipolysis in 3T3-L1 adipocytes, and this effect was attenuated by EPA (50 μM). In addition the lipolytic action of dexamethasone was attenuated by anti-ZAG antibody, suggesting that the induction of lipolysis was mediated through an increase in ZAG expression. This was confirmed by Western blotting, which showed that dexamethasone (1.68 μM) induced a two-fold increase in ZAG expression in both cells and media, and that this was attenuated by EPA (50 μM). These results suggest that EPA may preserve adipose tissue in cachectic mice by downregulation of ZAG expression through interference with glucocorticoid signalling. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Progression and severity of type 1 diabetes is dependent upon inflammatory induction of nitric oxide production and consequent pancreatic β-cell damage. Glucocorticoids (GCs) are highly effective anti-inflammatory agents but have been precluded in type 1 diabetes and in islet transplantation protocols because they exacerbated insulin resistance and suppressed β-cell insulin secretion at the high-doses employed clinically. In contrast, physiological-range elevation of GC action within β-cells ameliorated lipotoxic β-cell failure in transgenic mice overexpressing the intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (MIP-HSD1tg/+ mice). Here, we tested the hypothesis that elevated β-cell 11beta-HSD1 protects against the β-cell destruction elicited by streptozotocin (STZ), a toxin that dose-dependently mimics aspects of inflammatory and autoimmune β-cell destruction. MIP-HSD1tg/+ mice exhibited an episodic protection from the severe hyperglycemia caused by a single high dose of STZ associated with higher and sustained β-cell survival, maintained β-cell replicative potential, higher plasma and islet insulin levels, reduced inflammatory macrophage infiltration and increased anti-inflammatory T regulatory cell content. MIP-HSD1tg/+ mice also completely resisted mild hyperglycemia and insulitis induced by multiple low-dose STZ administration. In vitro, MIP-HSD1tg/+ islets exhibited attenuated STZ-induced nitric oxide production, an effect reversed with a specific 11beta-HSD1 inhibitor. GC regeneration selectively within β-cells protects against inflammatory β-cell destruction, suggesting therapeutic targeting of 11beta-HSD1 may ameliorate processes that exacerbate type 1 diabetes and that hinder islet transplantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adrenal cortex secretes steroid hormones, including glucocorticoids and mineralocorticoids. Glucocorticoids control body homeostasis, stress, and immune responses, while mineralocorticoids regulate the water and electrolyte balance. A spectrum of genetic defects can disrupt the normal adrenal development, causing adrenal hypoplasia and various forms of adrenal insufficiency, which usually present in infancy or childhood with or without mineralocorticoid deficiency and with or without gonadal dysfunction. The genetic causes of adrenal hypoplasia can be broadly categorized into adrenal hypoplasia due to adrenocorticotropic hormone resistance syndromes (i.e., familial glucocorticoid deficiency and triple A syndrome) and adrenal hypoplasia due to primary defects in the development of the adrenal glands (i.e., X-linked adrenal hypoplasia congenita and primary adrenal hypoplasia caused by steroidogenic factor 1 mutations).