7 resultados para GLOBALLY HYPERBOLIC SPACETIMES
em Aston University Research Archive
Resumo:
We present a framework for calculating globally optimal parameters, within a given time frame, for on-line learning in multilayer neural networks. We demonstrate the capability of this method by computing optimal learning rates in typical learning scenarios. A similar treatment allows one to determine the relevance of related training algorithms based on modifications to the basic gradient descent rule as well as to compare different training methods.
Resumo:
We present a method for determining the globally optimal on-line learning rule for a soft committee machine under a statistical mechanics framework. This rule maximizes the total reduction in generalization error over the whole learning process. A simple example demonstrates that the locally optimal rule, which maximizes the rate of decrease in generalization error, may perform poorly in comparison.
Resumo:
A method for calculating the globally optimal learning rate in on-line gradient-descent training of multilayer neural networks is presented. The method is based on a variational approach which maximizes the decrease in generalization error over a given time frame. We demonstrate the method by computing optimal learning rates in typical learning scenarios. The method can also be employed when different learning rates are allowed for different parameter vectors as well as to determine the relevance of related training algorithms based on modifications to the basic gradient descent rule.
Resumo:
We present a method for determining the globally optimal on-line learning rule for a soft committee machine under a statistical mechanics framework. This work complements previous results on locally optimal rules, where only the rate of change in generalization error was considered. We maximize the total reduction in generalization error over the whole learning process and show how the resulting rule can significantly outperform the locally optimal rule.
Resumo:
Doubt is cast on the much quoted results of Yakupov that the torsion vector in embedding class two vacuum space-times is necessarily a gradient vector and that class 2 vacua of Petrov type III do not exist. The rst result is equivalent to the fact that the two second fundamental forms associated with the embedding necessarily commute and has been assumed in most later investigations of class 2 vacuum space-times. Yakupov stated the result without proof, but hinted that it followed purely algebraically from his identity: Rijkl Ckl = 0 where Cij is the commutator of the two second fundamental forms of the embedding.From Yakupov's identity, it is shown that the only class two vacua with non-zero commutator Cij must necessarily be of Petrov type III or N. Several examples are presented of non-commuting second fundamental forms that satisfy Yakupovs identity and the vacuum condition following from the Gauss equation; both Petrov type N and type III examples occur. Thus it appears unlikely that his results could follow purely algebraically. The results obtained so far do not constitute denite counter-examples to Yakupov's results as the non-commuting examples could turn out to be incompatible with the Codazzi and Ricci embedding equations. This question is currently being investigated.
Resumo:
This paper explores the role of transactive memory in enabling knowledge transfer between globally distributed teams. While the information systems literature has recently acknowledged the role transactive memory plays in improving knowledge processes and performance in colocated teams, little is known about its contribution to distributed teams. To contribute to filling this gap, knowledge-transfer challenges and processes between onsite and offshore teams were studied at TATA Consultancy Services. In particular, the paper describes the transfer of knowledge between onsite and offshore teams through encoding, storing and retrieving processes. An in-depth case study of globally distributed software development projects was carried out, and a qualitative, interpretive approach was adopted. The analysis of the case suggests that in order to overcome differences derived from the local contexts of the onsite and offshore teams (e.g. different work routines, methodologies and skills), some specific mechanisms supporting the development of codified and personalized ‘directories’ were introduced. These include the standardization of templates and methodologies across the remote sites as well as frequent teleconferencing sessions and occasional short visits. These mechanisms contributed to the development of the notion of ‘who knows what’ across onsite and offshore teams despite the challenges associated with globally distributed teams, and supported the transfer of knowledge between onsite and offshore teams. The paper concludes by offering theoretical and practical implications.
Resumo:
Einstein spacetimes (that is vacuum spacetimes possibly with a non-zero cosmological constant A) with constant non-zero Weyl eigenvalues are considered. For type Petrov II & D this assumption allows one to prove that the non-repeated eigenvalue necessarily has the value 2A/3 and it turns out that the only possible spacetimes are some Kundt-waves considered by Lewandowski which are type II and a Robinson-Bertotti solution of type D. For Petrov type I the only solution turns out to be a homogeneous pure vacuum solution found long ago by Petrov using group theoretic methods. These results can be summarised by the statement that the only vacuum spacetimes with constant Weyl eigenvalues are either homogeneous or are Kundt spacetimes. This result is similar to that of Coley et al. who proved their result for general spacetimes under the assumption that all scalar invariants constructed from the curvature tensor and all its derivatives were constant.