2 resultados para GIS Techniques

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years there has been a great effort to combine the technologies and techniques of GIS and process models. This project examines the issues of linking a standard current generation 2½d GIS with several existing model codes. The focus for the project has been the Shropshire Groundwater Scheme, which is being developed to augment flow in the River Severn during drought periods by pumping water from the Shropshire Aquifer. Previous authors have demonstrated that under certain circumstances pumping could reduce the soil moisture available for crops. This project follows earlier work at Aston in which the effects of drawdown were delineated and quantified through the development of a software package that implemented a technique which brought together the significant spatially varying parameters. This technique is repeated here, but using a standard GIS called GRASS. The GIS proved adequate for the task and the added functionality provided by the general purpose GIS - the data capture, manipulation and visualisation facilities - were of great benefit. The bulk of the project is concerned with examining the issues of the linkage of GIS and environmental process models. To this end a groundwater model (Modflow) and a soil moisture model (SWMS2D) were linked to the GIS and a crop model was implemented within the GIS. A loose-linked approach was adopted and secondary and surrogate data were used wherever possible. The implications of which relate to; justification of a loose-linked versus a closely integrated approach; how, technically, to achieve the linkage; how to reconcile the different data models used by the GIS and the process models; control of the movement of data between models of environmental subsystems, to model the total system; the advantages and disadvantages of using a current generation GIS as a medium for linking environmental process models; generation of input data, including the use of geostatistic, stochastic simulation, remote sensing, regression equations and mapped data; issues of accuracy, uncertainty and simply providing adequate data for the complex models; how such a modelling system fits into an organisational framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From 1992 to 2012 4.4 billion people were affected by disasters with almost 2 trillion USD in damages and 1.3 million people killed worldwide. The increasing threat of disasters stresses the need to provide solutions for the challenges faced by disaster managers, such as the logistical deployment of resources required to provide relief to victims. The location of emergency facilities, stock prepositioning, evacuation, inventory management, resource allocation, and relief distribution have been identified to directly impact the relief provided to victims during the disaster. Managing appropriately these factors is critical to reduce suffering. Disaster management commonly attracts several organisations working alongside each other and sharing resources to cope with the emergency. Coordinating these agencies is a complex task but there is little research considering multiple organisations, and none actually optimising the number of actors required to avoid shortages and convergence. The aim of the this research is to develop a system for disaster management based on a combination of optimisation techniques and geographical information systems (GIS) to aid multi-organisational decision-making. An integrated decision system was created comprising a cartographic model implemented in GIS to discard floodable facilities, combined with two models focused on optimising the decisions regarding location of emergency facilities, stock prepositioning, the allocation of resources and relief distribution, along with the number of actors required to perform these activities. Three in-depth case studies in Mexico were studied gathering information from different organisations. The cartographic model proved to reduce the risk to select unsuitable facilities. The preparedness and response models showed the capacity to optimise the decisions and the number of organisations required for logistical activities, pointing towards an excess of actors involved in all cases. The system as a whole demonstrated its capacity to provide integrated support for disaster preparedness and response, along with the existence of room for improvement for Mexican organisations in flood management.