25 resultados para GAS SEPARATION EFFICIENCY

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents a computational fluid dynamic (CFD) study of Dimethyl Ether (DME) gas adsorptive separation and steam reforming (DME-SR) in a large scale Circulating Fluidized Bed (CFB) reactor. The CFD model is based on Eulerian-Eulerian dispersed flow and solved using commercial software (ANSYS FLUENT). Hydrogen is currently receiving increasing interest as an alternative source of clean energy and has high potential applications, including the transportation sector and power generation. Computational fluid dynamic (CFD) modelling has attracted considerable recognition in the engineering sector consequently leading to using it as a tool for process design and optimisation in many industrial processes. In most cases, these processes are difficult or expensive to conduct in lab scale experiments. The CFD provides a cost effective methodology to gain detailed information up to the microscopic level. The main objectives in this project are to: (i) develop a predictive model using ANSYS FLUENT (CFD) commercial code to simulate the flow hydrodynamics, mass transfer, reactions and heat transfer in a large scale dual fluidized bed system for combined gas separation and steam reforming processes (ii) implement a suitable adsorption models in the CFD code, through a user defined function, to predict selective separation of a gas from a mixture (iii) develop a model for dimethyl ether steam reforming (DME-SR) to predict hydrogen production (iv) carry out detailed parametric analysis in order to establish ideal operating conditions for future industrial application. The project has originated from a real industrial case problem in collaboration with the industrial partner Dow Corning (UK) and jointly funded by the Engineering and Physical Research Council (UK) and Dow Corning. The research examined gas separation by adsorption in a bubbling bed, as part of a dual fluidized bed system. The adsorption process was simulated based on the kinetics derived from the experimental data produced as part of a separate PhD project completed under the same fund. The kinetic model was incorporated in FLUENT CFD tool as a pseudo-first order rate equation; some of the parameters for the pseudo-first order kinetics were obtained using MATLAB. The modelling of the DME adsorption in the designed bubbling bed was performed for the first time in this project and highlights the novelty in the investigations. The simulation results were analysed to provide understanding of the flow hydrodynamic, reactor design and optimum operating condition for efficient separation. Bubbling bed validation by estimation of bed expansion and the solid and gas distribution from simulation agreed well with trends seen in the literatures. Parametric analysis on the adsorption process demonstrated that increasing fluidizing velocity reduced adsorption of DME. This is as a result of reduction in the gas residence time which appears to have much effect compared to the solid residence time. The removal efficiency of DME from the bed was found to be more than 88%. Simulation of the DME-SR in FLUENT CFD was conducted using selected kinetics from literature and implemented in the model using an in-house developed user defined function. The validation of the kinetics was achieved by simulating a case to replicate an experimental study of a laboratory scale bubbling bed by Vicente et al [1]. Good agreement was achieved for the validation of the models, which was then applied in the DME-SR in the large scale riser section of the dual fluidized bed system. This is the first study to use the selected DME-SR kinetics in a circulating fluidized bed (CFB) system and for the geometry size proposed for the project. As a result, the simulation produced the first detailed data on the spatial variation and final gas product in such an industrial scale fluidized bed system. The simulation results provided insight in the flow hydrodynamic, reactor design and optimum operating condition. The solid and gas distribution in the CFB was observed to show good agreement with literatures. The parametric analysis showed that the increase in temperature and steam to DME molar ratio increased the production of hydrogen due to the increased DME conversions, whereas the increase in the space velocity has been found to have an adverse effect. Increasing temperature between 200 oC to 350 oC increased DME conversion from 47% to 99% while hydrogen yield increased substantially from 11% to 100%. The CO2 selectivity decreased from 100% to 91% due to the water gas shift reaction favouring CO at higher temperatures. The higher conversions observed as the temperature increased was reflected on the quantity of unreacted DME and methanol concentrations in the product gas, where both decreased to very low values of 0.27 mol% and 0.46 mol% respectively at 350 °C. Increasing the steam to DME molar ratio from 4 to 7.68 increased the DME conversion from 69% to 87%, while the hydrogen yield increased from 40% to 59%. The CO2 selectivity decreased from 100% to 97%. The decrease in the space velocity from 37104 ml/g/h to 15394 ml/g/h increased the DME conversion from 87% to 100% while increasing the hydrogen yield from 59% to 87%. The parametric analysis suggests an operating condition for maximum hydrogen yield is in the region of 300 oC temperatures and Steam/DME molar ratio of 5. The analysis of the industrial sponsor’s case for the given flow and composition of the gas to be treated suggests that 88% of DME can be adsorbed from the bubbling and consequently producing 224.4t/y of hydrogen in the riser section of the dual fluidized bed system. The process also produces 1458.4t/y of CO2 and 127.9t/y of CO as part of the product gas. The developed models and parametric analysis carried out in this study provided essential guideline for future design of DME-SR at industrial level and in particular this work has been of tremendous importance for the industrial collaborator in order to draw conclusions and plan for future potential implementation of the process at an industrial scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents the first part of a CFD study on the performance of a downer reactor for biomass pyrolysis. The reactor was equipped with a novel gas-solid separation method, developed by the co-authors from the ICFAR (Canada). The separator, which was designed to allow for fast separation of clean pyrolysis gas, consisted of a cone deflector and a gas exit pipe installed inside the downer reactor. A multi-fluid model (Eulerian-Eulerian) with constitutive relations adopted from the kinetic theory of granular flow was used to simulate the multiphase flow. The effects of the various parameters including operation conditions, separator geometry and particle properties on the overall hydrodynamics and separation efficiency were investigated. The model prediction of the separator efficiency was compared with experimental measurements. The results revealed distinct hydrodynamic features around the cone separator, allowing for up to 100% separation efficiency. The developed model provided a platform for the second part of the study, where the biomass pyrolysis is simulated and the product quality as a function of operating conditions is analyzed. Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Eulerian-Eulerian CFD model was used to investigate the fast pyrolysis of biomass in a downer reactor equipped with a novel gas-solid separation mechanism. The highly endothermic pyrolysis reaction was assumed to be entirely driven by an inert solid heat carrier (sand). A one-step global pyrolysis reaction, along with the equations describing the biomass drying and heat transfer, was implemented in the hydrodynamic model presented in part I of this study (Fuel Processing Technology, V126, 366-382). The predictions of the gas-solid separation efficiency, temperature distribution, residence time and the pyrolysis product yield are presented and discussed. For the operating conditions considered, the devolatilisation efficiency was found to be above 60% and the yield composition in mass fraction was 56.85% bio-oil, 37.87% bio-char and 5.28% non-condensable gas (NCG). This has been found to agree reasonably well with recent relevant published experimental data. The novel gas-solid separation mechanism allowed achieving greater than 99.9% separation efficiency and < 2 s pyrolysis gas residence time. The model has been found to be robust and fast in terms of computational time, thus has the great potential to aid in future design and optimisation of the biomass fast pyrolysis process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes the horizontal deflection behaviour of the streams of particles in paramagnetic fluids under a high-gradient superconducting magnetic field, which is the continued work on the exploration of particle magneto-Archimedes levitation. Based on the previous work on the horizontal deflection of a single particle, a glass box and collector had been designed to observe the movement of particle group in paramagnetic fluids. To get the exact separation efficiency, the method of "sink-float" involved the high density fluid polytungstate (dense medium separation) and MLA (Mineral Liberation Analyser) was performed. It was found that the particles were deflected and settled at certain positions on the container floor due to the combined forces of gravity and magneto-Archimedes forces as well as a lateral buoyancy (displacement) force. Mineral particles with different densities and susceptibilities could be deflected to different positions, thus producing groups of similar types of particles. The work described here, although in its infancy, could form the basis of new approach of separating particles based on a combination of susceptibility and density. © 2014 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hybrid nanocomposites based on N-doped SrTiO3 nanoparticles wrapped in g-C3N4 nanosheets were successfully prepared by a facile and reproducible polymeric citrate and thermal exfoliation method. The results clearly indicated that the N-doped SrTiO3 nanoparticles are successfully wrapped in layers of the g-C3N4 nanosheets. The g-C3N4/N-doped SrTiO3 nanocomposites showed absorption edges at longer wavelengths compared with the pure g-C3N4 as well as N-doped SrTiO3. The hybrid nanocomposites exhibit an improved photocurrent response and photocatalytic activity under visible light irradiation. Interestingly, the hybrid nanocomposite possesses high photostability and reusability. Based on experimental results, the possible mechanism for prolonged lifetime of the photoinduced charge carrier was also discussed. The high performance of the g-C3N4/N-doped SrTiO3 photocatalysts is due to the synergic effect at the interface of g-C3N4 and N-doped SrTiO3 hetero/nanojunction including the high separation efficiency of the charge carrier, band energy matching and the suppressed recombination rate. Therefore, the hybrid photocatalyst could be of potential interest for water splitting and environmental remediation under natural sunlight.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Developing novel heterojunction photocatalysts is a powerful strategy for improving the separation efficiency of photogenerated charge carriers, which is attracting the intense research interest in photocatalysis. Herein we report a highly efficient hetero/nanojunction consisting of Ag2CO3 nanoparticles grown on layered g-C3N4 nanosheets synthesized via a facile and template free in situ precipitation method. The UV–vis diffuse reflectance studies revealed that the synthesized Ag2CO3/g-C3N4 hetero/nanojunctions exhibit a broader and stronger light absorption in the visible light region, which is highly beneficial for absorbing the visible light in the solar spectrum. The optimum photocatalytic activity of Ag2CO3/g-C3N4 at a weight content of 10% Ag2CO3 for the degradation of Rhodamine B was almost 5.5 and 4 times as high as that of the pure Ag2CO3 and g-C3N4, respectively. The enhanced photocatalytic activity of the Ag2CO3/g-C3N4 hetero/nanojunctions is due to synergistic effects including the strong visible light absorption, large specific surface area, and high charge transfer and separation efficiency. More importantly, the high photostability and low use of the noble metal silver which reduces the cost of the material. Therefore, the synthesized Ag2CO3/g-C3N4 hetero/nanojunction photocatalyst is a promising candidate for energy storage and environment protection applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A facile and reproducible template free in situ precipitation method has been developed for the synthesis of Ag3PO4 nanoparticles on the surface of a g-C3N4 photocatalyst at room temperature. The g-C3N4–Ag3PO4 organic–inorganic hybrid nanocomposite photocatalysts were characterized by various techniques. TEM results show the in situ growth of finely distributed Ag3PO4 nanoparticles on the surface of the g-C3N4 sheet. The optimum photocatalytic activity of g-C3N4–Ag3PO4 at 25 wt% of g-C3N4 under visible light is almost 5 and 3.5 times higher than pure g-C3N4 and Ag3PO4 respectively. More attractively, the stability of Ag3PO4 was improved due to the in situ deposition of Ag3PO4 nanoparticles on the surface of the g-C3N4 sheet. The improved performance of the g-C3N4–Ag3PO4 hybrid nanocomposite photocatalysts under visible light irradiation was induced by a synergistic effect, including high charge separation efficiency of the photoinduced electron–hole pair, the smaller particle size, relatively high surface area and the energy band structure. Interestingly, the heterostructured g-C3N4–Ag3PO4 nanocomposite significantly reduces the use of the noble metal silver, thereby effectively reducing the cost of the Ag3PO4 based photocatalyst.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this work was to develop a generic methodology for evaluating and selecting, at the conceptual design phase of a project, the best process technology for Natural Gas conditioning. A generic approach would be simple and require less time and would give a better understanding of why one process is to be preferred over another. This will lead to a better understanding of the problem. Such a methodology would be useful in evaluating existing, novel and hybrid technologies. However, to date no information is available in the published literature on such a generic approach to gas processing. It is believed that the generic methodology presented here is the first available for choosing the best or cheapest method of separation for natural gas dew-point control. Process cost data are derived from evaluations carried out by the vendors. These evaluations are then modelled using a steady-state simulation package. From the results of the modelling the cost data received are correlated and defined with respect to the design or sizing parameters. This allows comparisons between different process systems to be made in terms of the overall process. The generic methodology is based on the concept of a Comparative Separation Cost. This takes into account the efficiency of each process, the value of its products, and the associated costs. To illustrate the general applicability of the methodology, three different cases suggested by BP Exploration are evaluated. This work has shown that it is possible to identify the most competitive process operations at the conceptual design phase and illustrate why one process has an advantage over another. Furthermore, the same methodology has been used to identify and evaluate hybrid processes. It has been determined here that in some cases they offer substantial advantages over the separate process techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study has been undertaken of the vapor-phase adsorptive separation of n-alkanes from Kuwait kerosene (Kuwait National Petroleum Company, heavy kerosene) using zeolite molecular sieves. Due to the shortage of information on the adsorption of multicomponent systems in the open literature, the present investigation was initiated to study the effect of feed flowrate, temperature, and zeolite particle size on the height of mass transfer zone (MTZ) and the dynamic capacity of the adsorbent for multicomponent n-alkanes adsorption on a fixed-bed of zeolite type-5A. The optimum operating conditions for separation of the n-alkanes has been identified so that the effluent would also be of marketable quality. The effect of multicycle adsorption-desorption stages on the dynamic behaviour of zeolite using steam as a desorbing agent has been studied and compared with n-pentane and n-hexane as desorbing agents. The separation process comprised one cycle of adsorption using a fixed-bed of zeolite type-5A. The bed was fed with vaporized kerosene until saturation had been achieved whereby the n-alkanes were adsorbed and the denormalized material eluted. The process of adsorption-desorption was carried out isobarically at one atmosphere. A mathematical model has been developed to predict the breakthrough time using the method of characteristics. The results were in a reasonable agreement with the experimental values. This model has also been utilized to develop the equilibrium isotherm. Optimum operating conditions were achieved at a feed flowrate of 33.33 x 10-9 m3/s, a temperature of 643 K, and a particle size of (1.0 - 2.0) x 10-3 m. This yielded an HMTZ value and a dynamic capacity of 0.206 m and 9.6S3 x 10-2 kg n-alkanes/kg of zeolite respectively. These data will serve as a basis for design of a commercial plant. The purity of liquid-paraffin product desorbed using steam was 83.24 wt%. The dynamic capacity was noticed to decrease sharply with the cycle number, without intermediate reactivation of zeolite, while it was kept unchanged by intermediate reactivation. Normal hexane was found to be the best desorbing agent, the efficiency of which was mounted to 88.2%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is important to maintain a uniform distribution of gas and liquid in large diameter packed columns to maintain mass transfer efficiency on scaling up. This work presents measurements and methods of evaluating maldistributed gas flow in packed columns. Little or no previous work has been done in this field. A gas maldistribution number, F, was defined, based on point to point velocity variations in the gas emerging from the top of packed beds. f has a minimum value for a uniformly distributed flow and much larger values for maldistributed flows. A method of testing the quality of vapour distributors is proposed, based on "the variation of f with packed height. A good gas distributor requires a short packed depth to give a good gas distribution. Measurements of gas maldistribution have shown that the principle of dynamic similarity is satisfied if two geometrically similar beds are operated at the same Reynold's number. The validity of f as a good measure of gas maldistribution, and the principle of dynamic similarity are tested statistically by Multi-Factor Analysis of the variance, and visually by the response "surfaces technique. Pressure distribution has been measured in a model of a large diameter packed bed, and shown to be associated with the velocity of the gas in a tangential feed pipe. Two simplified theoretical models are proposed to describe the flow of gases through packed beds and to support the principle of dynamic similarity. These models explain why the packed bed itself causes the flow of gas to become more uniformly distributed. A 1.2m. diameter scaled-down model was constructed geometrically similar to a 7.3m. diameter vacuum crude distillation column. The previously known internal cylinder gas distributor was tested. Three new distributors suitable for use in a large diameter column were developed and tested, these are: Internal Cylinder with Slots and Cross Baffles, Internal Cylinder with Guides in the Annulus, Internal Cylinder with Internal Cross Baffles - It has been shown that this is an excellent distributor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various micro-radial compressor configurations were investigated using one-dimensional meanline and computational fluid dynamics (CFD) techniques for use in a micro gas turbine (MGT) domestic combined heat and power (DCHP) application. Blade backsweep, shaft speed, and blade height were varied at a constant pressure ratio. Shaft speeds were limited to 220 000 r/min, to enable the use of a turbocharger bearing platform. Off-design compressor performance was established and used to determine the MGT performance envelope; this in turn was used to assess potential cost and environmental savings in a heat-led DCHP operating scenario within the target market of a detached family home. A low target-stage pressure ratio provided an opportunity to reduce diffusion within the impeller. Critically for DCHP, this produced very regular flow, which improved impeller performance for a wider operating envelope. The best performing impeller was a low-speed, 170 000 r/min, low-backsweep, 15° configuration producing 71.76 per cent stage efficiency at a pressure ratio of 2.20. This produced an MGT design point system efficiency of 14.85 per cent at 993 W, matching prime movers in the latest commercial DCHP units. Cost and CO2 savings were 10.7 per cent and 6.3 per cent, respectively, for annual power demands of 17.4 MWht and 6.1 MWhe compared to a standard condensing boiler (with grid) installation. The maximum cost saving (on design point) was 14.2 per cent for annual power demands of 22.62 MWht and 6.1 MWhe corresponding to an 8.1 per cent CO2 saving. When sizing, maximum savings were found with larger heat demands. When sized, maximum savings could be made by encouraging more electricity export either by reducing household electricity consumption or by increasing machine efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies into the two-phase flow patterns produced on a sieve tray were carried out using an air-water simulator of 2.44 m in diameter. The flow patterns were investigated by a number of methods, direct observation using directional flow pointers; by water-cooling to simulate mass transfer; and by measurement of the height of clear liquid across the tray with manometers. The flow rates used were designed to show how the flow pattern changed with the change in the gas and liquid rates. The results from water-only studies on an un-perforated tray were compared with those produced on a sieve tray with holes of 12.7 mm diameter. The presence of regions on the sides of the tray where the liquid was circulating was noted from the water-only experiments. The presence and magnitude of the circulations was reduced when the air was passed through the liquid. These were similar to the findings of Hine (1990) and Chambers (1993). When circulation occurred, the flow separated at the ends of the inlet downcomer and circulations of up to 30% of the tray area were observed. Water-cooling and the manometer measurements were used to show the effect of the flow pattern on the tray efficiency and the height of clear liquid respectively. The efficiency was severely reduced by the presence of circulations. The height of clear liquid tended to rise in these areas. A comparison of data collected on trays with different hole diameters showed that the larger hole diameter inhibited the on-set of separation to a greater extent than small hole diameters. The tray efficiency was affected by a combination of the better mixing on smaller hole trays and detrimental effect of greater circulation on these trays. Work on a rectangular tray geometry was carried out to assess the effect of hole size on the height of clear liquid. It was found that the gradient on the outlet half of the tray was very small and that the highest clear liquid height was given by the highest hole size. Overall, the experiments helped to clarify the effect that the flow pattern had on the operation of the tray. It is hoped that the work can be of use in the development of models to predict the flow pattern and hence the tray efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental and theoretical methods have been used to study zeolite structures, properties and applications as membranes for separation purposes. Thin layers of silicalite-1 and Na-LTA zeolites have been synthesised onto carbon-graphite supports using a hydrothermal synthesis procedure. The separation behaviour of the composite membranes was characterized by gas permeation studies of pure, binary and ternary mixtures of methane, ethane and propane. The influence of temperature and feed gas mixture composition on the separation and selectivity performance of the membranes was also investigated. It was found that the silicalite-1 composite membranes synthesised onto the 4 hour oxidized carbon-graphite supports showed the most promising separation behaviour of all the composite membranes investigated. Molecular simulation methods were used to gain an understanding of how hydrocarbon molecules behave both within the pores and on the surfaces of silicalite-1, mordenite and LTA zeolites. Molecular dynamic simulations were used to investigate the influence of temperature and molecular loadings on the diffusional behaviour of hydrocarbons in zeolites. Both hydroxylated (surface termination with hydroxyl groups) and non-hydroxylated silicalite-1 and Na-mordenite surfaces were generated. For both zeolites the most stable surfaces correspond to the {010} surface. For the silicalite-1 {010} surface the adsorption of hydrocarbons and molecular water onto the hydroxylated surface showed a favourable exothermic adsorption process compared to adsorption on the non-hydroxylated surface. With the Na-mordenite {010} surface the adsorption of hydrocarbons onto both the hydroxylated and non-hydroxylated surfaces had a combination of favourable and non-favourable adsorption energies, while the adsorption of molecular water onto both types of surface was found to be a favourable adsorption process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work studies the development of polymer membranes for the separation of hydrogen and carbon monoxide from a syngas produced by the partial oxidation of natural gas. The CO product is then used for the large scale manufacture of acetic acid by reaction with methanol. A method of economic evaluation has been developed for the process as a whole and a comparison is made between separation of the H2/CO mixture by a membrane system and the conventional method of cryogenic distillation. Costs are based on bids obtained from suppliers for several different specifications for the purity of the CO fed to the acetic acid reactor. When the purity of the CO is set at that obtained by cryogenic distillation it is shown that the membrane separator offers only a marginal cost advantage. Cost parameters for the membrane separation systems have been defined in terms of effective selectivity and cost permeability. These new parameters, obtained from an analysis of the bids, are then used in a procedure which defines the optimum degree of separation and recovery of carbon monoxide for a minimum cost of manufacture of acetic acid. It is shown that a significant cost reduction is achieved with a membrane separator at the optimum process conditions. A method of "targeting" the properties of new membranes has been developed. This involves defining the properties for new (hypothetical -yet to be developed) membranes such that their use for the hydrogen/carbon monoxide separation will produce a reduced cost of acetic acid manufacture. The use of the targeting method is illustrated in the development of new membranes for the separation of hydrogen and carbon monoxide. The selection of polymeric materials for new membranes is based on molecular design methods which predict the polymer properties from the molecular groups making up the polymer molecule. Two approaches have been used. One method develops the analogy between gas solubility in liquids and that in polymers. The UNIFAC group contribution method is then used to predict gas solubility in liquids. In the second method the polymer Permachor number, developed by Salame, has been correlated with hydrogen and carbon monoxide permeabilities. These correlations are used to predict the permeabilities of gases through polymers. Materials have been tested for hydrogen and carbon monoxide permeabilities and improvements in expected economic performance have been achieved.