4 resultados para Functions of two Variables
em Aston University Research Archive
Resumo:
Pearson's correlation coefficient (‘r’) is one of the most widely used of all statistics. Nevertheless, care needs to be used in interpreting the results because with large numbers of observations, quite small values of ‘r’ become significant and the X variable may only account for a small proportion of the variance in Y. Hence, ‘r squared’ should always be calculated and included in a discussion of the significance of ‘r’. The use of ‘r’ also assumes that the data follow a bivariate normal distribution (see Statnote 17) and this assumption should be examined prior to the study. If the data do not conform to such a distribution, the use of a non-parametric correlation coefficient should be considered. A significant correlation should not be interpreted as indicating ‘causation’ especially in observational studies, in which the two variables may be correlated because of their mutual correlations with other confounding variables.
Resumo:
thesis is developed from a real life application of performance evaluation of small and medium-sized enterprises (SMEs) in Vietnam. The thesis presents two main methodological developments on evaluation of dichotomous environment variable impacts on technical efficiency. Taking into account the selection bias the thesis proposes a revised frontier separation approach for the seminal Data Envelopment Analysis (DEA) model which was developed by Charnes, Cooper, and Rhodes (1981). The revised frontier separation approach is based on a nearest neighbour propensity score matching pairing treated SMEs with their counterfactuals on the propensity score. The thesis develops order-m frontier conditioning on propensity score from the conditional order-m approach proposed by Cazals, Florens, and Simar (2002), advocated by Daraio and Simar (2005). By this development, the thesis allows the application of the conditional order-m approach with a dichotomous environment variable taking into account the existence of the self-selection problem of impact evaluation. Monte Carlo style simulations have been built to examine the effectiveness of the aforementioned developments. Methodological developments of the thesis are applied in empirical studies to evaluate the impact of training programmes on the performance of food processing SMEs and the impact of exporting on technical efficiency of textile and garment SMEs of Vietnam. The analysis shows that training programmes have no significant impact on the technical efficiency of food processing SMEs. Moreover, the analysis confirms the conclusion of the export literature that exporters are self selected into the sector. The thesis finds no significant impact from exporting activities on technical efficiency of textile and garment SMEs. However, large bias has been eliminated by the proposed approach. Results of empirical studies contribute to the understanding of the impact of different environmental variables on the performance of SMEs. It helps policy makers to design proper policy supporting the development of Vietnamese SMEs.
Resumo:
There is a proliferation of categorization schemes in the scientific literature that have mostly been developed from psychologists’ understanding of the nature of linguistic interactions. This has a led to problems in defining question types used by interviewers. Based on the principle that the overarching purpose of an interview is to elicit information and that questions can function both as actions in their own right and as vehicles for other actions, a Conversational Analysis approach was used to analyse a small number of police interviews. The analysis produced a different categorization of question types and, in particular, the conversational turns fell into two functional types: (i) Topic Initiation Questions and (ii) Topic Facilitation Questions. We argue that forensic interviewing requires a switch of focus from the ‘words’ used by interviewers in question types to the ‘function’ of conversational turns within interviews.
Resumo:
A multiscale Molecular Dynamics/Hydrodynamics implementation of the 2D Mercedes Benz (MB or BN2D) [1] water model is developed and investigated. The concept and the governing equations of multiscale coupling together with the results of the two-way coupling implementation are reported. The sensitivity of the multiscale model for obtaining macroscopic and microscopic parameters of the system, such as macroscopic density and velocity fluctuations, radial distribution and velocity autocorrelation functions of MB particles, is evaluated. Critical issues for extending the current model to large systems are discussed.