19 resultados para Fuels.
em Aston University Research Archive
Resumo:
The current annual arisings of used car/van tyres in the U.K. has been found to be around 25m (188,000 tonnes). After the established reuse industries have taken their requirements this leaves 13.5m (102,000 tonnes) waste tyres; a quantity that can no longer be satisfactorily tipped. Laboratory scale experiments have shown that tyre can be pyrolised, using a molten carbonate system as the reaction medium, at rates corresponding to 14.9-42.7 g tyre/min. per litre of melt over the range 475 and 650°C. The product yields by weight of tyre input between the same temperatures are: hydrocarbon oil 23-36 wt. %, hydrocarbon gas 7- 18 wt. %, carbonaceous char 35-40 wt. %, steel 16.7 wt. % and inorganics 5.4 wt. %. The oil and gas evolve from the reactor and can easily be collected by conventional means. The steel and inorganics remain in the reactor although on the commercial scale it is proposed that they would be removed by physical and chemical methods respectively. The char was found to pose considerable handling problems and so a method was devised by which it could be gasified in the reactor. This was best achieved by passing air at a less than stoichiometric rate which gave a gaseous product rich in carbon monoxide. In addition this action provides heat for the system as a whole. The rates at 675-9000C were in the range corresponding to 5.6- 14.89 char/min. per litre of melt. A process flow chart has been proposed for a continuous operation based on these systems. Data from theoretical and experimental studies has enabled economic evaluations of several commercial scales to be carried out. These have shown that 4,000 and 10,000 t/yr operations show a DCF rate of return around 30% while a 50,000 t/yr operation shows 60% which would be attractive to an experienced scrap operator.
Resumo:
The aim of this research was to assess the effect of oxygenated hydrocarbons on the knocking characteristics of an engine when blended with low-leaded gasoline. Alcohols, ethers, esters and ketones were tested individually and in various combinations up to an oxygen content of 4% wt/wt in a blend with Series F-7 gasoline of 90, 92, 94 and 96 RON. Tests were carried out at wide open throttle, constant speed and standard timing setting. Engine speed was varied using a dynamometer and knock was detected by two piezoelectric transducers, one on the cylinder head monitoring all four cylinders and one monitoring the cylinder most prone to knock. The engine speeds associated with trace and light knock of a continuous nature were noted. Curves were produced for each oxygenate blend of base RON used against engine speed for the two knock conditions which were compared with those produced using pure Series F-7 fuels. From this a suggested RON of the blend was derived. RON increase was less when using a higher RON base fuel in the blend. Most individual oxygenates showed similar effects in similar concentrations when their oxygen content was comparable. Blends containing more than one oxygenate showed some variation with methanol/MTBE/3 methylbutan-2-one and methanol/MTBE/4 methyl pentan-2-one knocking less than expected and methanol/MTBE/TBA also showing good knock resistance. Further tests to optimise initial findings suggested a blend of methanol and MTBE to be superior although partial replacement of MTBE by 4 methyl pentan-2-one resulted in a fuel of comparable performance. Exhaust emissions were tested for a number of oxygenated blends in 2-star gasoline. 2-star and 4-star fuels were also tested for reference. All oxygenate blends reduced carbon monoxide emissions as expected and hydrocarbon emissions were also reduced. The largest reduction in carbon monoxide occurred using a 14.5 % (1 : 1 : 1) methanol/MTBE/4 methyl pentan-2-one blend. Hydrocarbon emissions were most markedly reduced by a blend containing 25.5 % 4 methyl pentan-2-one. Power output was tested for the blends and indicated a maximum increase of about 5 % at low engine speeds. The most advantageous blends were methanol/4 methyl pentan-2-one (6 : 5) 11% in 2-star and methanol/MTBE/4 methyl pentan-2-one (6 : 3 : 2) 11% in 2-star. In conclusion methanol/MTBE (6 : 5) and (5 : 5), and various combinations of methanol/MTBE/4 methyl pentan-2-one, notably (6 : 3 : 2) gave good results in all tests conducted. CFR testing of these blends showed them to increase both RON and MON substantially.
Resumo:
The use of biomass-derived liquids (in short: bioliquids) instead of solid biomass can help overcome some of the barriers hindering a wider use of biomass in smaller-scale CHP systems. Relevant bioliquids included biodiesel, vegetable oils as well straight and upgraded pyrolysis oil. In this joint EU-Russian research project Bioliquids-CHP prime movers (engines and turbines) will be developed and modified so that these can run efficiently on bioliquids. At the same time, bioliquids will be upgraded and blended in order to facilitate their use in prime movers. Preliminary results with regard to bioliquid selection, production, and characterisation; the selection and modification of a micro gas turbine; and the development of engines and components are discussed. The research also covers NOx emission reduction and control and an assessment of the benefits and economics of bioliquids-based CHP systems in EU and Russian markets.
Resumo:
Fast pyrolysis of biomass is a significant technology for producing pyrolysis liquids [also known as bio-oil], which contain a number of chemicals. The pyrolysis liquid can be used as a fuel, can be produced solely as a source of chemicals or can have some of the chemicals extracted and the residue used as a fuel. There were two primary objectives of this work. The first was to determine the fast pyrolysis conditions required to maximise the pyrolysis liquid yield from a number of biomass feedstocks. The second objective was to selectively increase the yield of certain chemicals in the pyrolysis liquid by pre-treatment of the feedstock prior to pyrolysis. For a particular biomass feedstock the pyrolysis liquid yield is affected by the reactor process parameters. It has been found that, providing the other process parameters are restricted to the values shown below, reactor temperature is the controlling parameter. The maximum pyrolysis liquid yield and the temperature at which it occurs has been found by a series of pyrolysis experiments over the temperature range 400-600°C. high heating rates > 1000°C/s; pyrolysis vapour residence times <2 seconds; pyrolysis vapour temperatures >400 but <500°C; rapid quenching of the product vapours. Pre-treatment techniques have been devised to modify the chemical composition and/or structure of the biomass in such a way as to influence the chemical composition of the pyrolysis liquid product. The pre-treatments were divided into two groups, those that remove material from the biomass and those which add material to the biomass. Component removal techniques have selectively increased the yield of levoglucosan from 2.45 to 18.58 mf wt.% [dry feedstock basis]. Additive techniques have selectively increased the yield of hydroxyacetaldehyde from 7.26 to 11.63 mf w.% [dry feedstock basis]. Techno-economic assessment has been carried out on an integrated levoglucosan production process [incorporating pre-treatment, pyrolysis and chemical extraction stages] to assess which method of chemical production is the more cost effective. It has been found that it is better to pre-treat the biomass in order to increase the yield of specific chemicals in the pyrolysis liquid and hence improve subsequent chemicals extraction.
Resumo:
Different species and genotypes of Miscanthus were analysed to determine the influence of genotypic variation and harvest time on cell wall composition and the products which may be refined via pyrolysis. Wet chemical, thermo-gravimetric (TGA) and pyrolysis-gas chromatography–mass spectrometry (Py-GC–MS) methods were used to identify the main pyrolysis products and determine the extent to which genotypic differences in cell wall composition influence the range and yield of pyrolysis products. Significant genotypic variation in composition was identified between species and genotypes, and a clear relationship was observed between the biomass composition, yields of pyrolysis products, and the composition of the volatile fraction. Results indicated that genotypes other than the commercially cultivated Miscanthus x giganteus may have greater potential for use in bio-refining of fuels and chemicals and several genotypes were identified as excellent candidates for the generation of genetic mapping families and the breeding of new genotypes with improved conversion quality characteristics.
Resumo:
A range of chromia pillared montmorillonite and tin oxide pillared laponite clay catalysts, as well as new pillared clay materials such as cerium and europium oxide pillared montmorillonites were synthesised. Methods included both conventional ion exchange techniques and microwave enhanced methods to improve performance and/or reduce preparation time. These catalytic materials were characterised in detail both before and after use in order to study the effect of the preparation parameters (starting material, preparation method, pillaring species, hydroxyl to metal ratio etc.) and the hydro cracking procedure on their properties. This led to a better understanding of the nature of their structure and catalytic operation. These catalysts were evaluated with regards to their performance in hydrocracking coal derived liquids in a conventional microbomb reactor (carried out at Imperial College). Nearly all catalysts displayed better conversions when reused. The chromia pillared montmorillonite CM3 and the tin oxide pillared laponite SL2a showed the best "conversions". The intercalation of chromium in the form of chromia (Cr203) in the interlayer clearly increased conversion. This was attributed to the redox activity of the chromia pillar. However, this increase was not proportional to the increase in chromium content or basal spacing. In the case of tin oxide pillared laponite, the catalytic activity might have been a result of better access to the acid sites due to the delaminated nature of laponite, whose activity was promoted by the presence of tin oxide. The manipulation of the structural properties of the catalysts via pillaring did not seem to have any effect on the catalysts' activity. This was probably due to the collapse of the pillars under hydrocracking conditions as indicated by the similar basal spacing of the catalysts after use. However, the type of the pillaring species had a significant effect on conversion. Whereas pillaring with chromium and tin oxides increased the conversion exhibited by the parent clays, pillaring with cerium and europium oxides appeared to have a detrimental effect. The relatively good performance of the parent clays was attributed to their acid sites, coupled with their macropores which are able to accommodate the very high molecular mass of coal derived liquids. A microwave reactor operating at moderate conditions was modified for hydro cracking coal derived liquids and tested with the conventional catalyst NiMo on alumina. It was thought that microwave irradiation could enable conversion to occur at milder conditions than those conventionally used, coupled with a more effective use of hydrogen. The latter could lead to lower operating costs making the process cost effective. However, in practice excessive coke deposition took place leading to negative total conversion. This was probably due to a very low hydrogen pressure, unable to have any hydro cracking effect even under microwave irradiation. The decomposition of bio-oil under microwave irradiation was studied, aiming to identify the extent to which the properties of bio-oil change as a function of time, temperature, mode of heating, presence of char and catalyst. This information would be helpful not only for upgrading bio-oil to transport fuels, but also for any potential fuel application. During this study the rate constants of bio-oil's decomposition were calculated assuming first order kinetics.
Resumo:
The aim of this project was to carry out an investigastion into suitable alternatives to gasoline for use in modern automobiles. The fuel would provide the western world with a means of extending the natural gasoline resources and the third world a way of cutting down their dependence on the oil producing countries for their energy supply. Alcohols, namely methanol and ethanol, provide this solution. They can be used as gasoline extenders or as fuels on their own.In order to fulfil the aims of the project a literature study was carried out to investigate methods and costs of producing these fuels. An experimental programme was then set up in which the performance of the alcohols was studied on a conventional engine. The engine used for this purpose was the Fiat 127 930cc four cylinder engine. This engine was used because of its popularity in the European countries. The Weber fixed jet carburettor, since it was designed to be used with gasoline, was adapted so that the alcohol fuels and the blends could be used in the most efficient way. This was mainly to take account of the lower heat content of the alcohols. The adaptation of the carburettor was in the form of enlarging the main metering jet. Allowances for the alcohol's lower specfic gravity were made during fuel metering.Owing to the low front end volatility of methanol and ethanol, it was expected that `start up' problems would occur. An experimental programme was set up to determine the temperature range for a minimum required percentage `take off' that would ease start-up since it was determined that a `take off' of about 5% v/v liquid in the vapour phase would be sufficient for starting. Additions such as iso-pentane and n-pentane were used to improve the front end volatility. This proved to be successful.The lower heat content of the alcohol fuels also meant that a greater charge of fuel would be required. This was seen to pose further problems with fuel distribution from the carburettor to the individual cylinders on a multicylinder engine. Since it was not possible to modify the existing manifold on the Fiat 127 engine, experimental tests on manifold geometry were carried out using the Ricardo E6 single cylinder variable compression engine. Results from these tests showed that the length, shape and cross-sectional area of the manifold play an important part in the distribution of the fuel entering the cylinder, ie. vapour phase, vapour/small liquid droplet/liquid film phase, vapour/large liquid droplet/liquid film phase etc.The solvent properties of the alcohols and their greater electrical conductivity suggested that the materials used on the engine would be prone to chemical attack. In order to determine the type and rate of chemical attack, an experimental programme was set up whereby carburettor and other components were immersed in the alcohols and in blends of alcohol with gasoline. The test fuels were aerated and in some instances kept at temperatures ranging from 50oC to 90oC. Results from these tests suggest that not all materials used in the conventional engine are equally suitable for use with alcohols and alcohol/gasoline blends. Aluminium for instance was severely attacked by methanol causing pitting and pin-holing in the surface.In general this whole experimental programme gave valuable information on the acceptability of substitute fuels. While the long term effects of alcohol use merit further study, it is clear that methanol and ethanol will be increasingly used in place of gasoline.
Resumo:
There is considerable concern over the increased effect of fossil fuel usage on the environment and this concern has resulted in an effort to find alternative, environmentally friendly energy sources. Biomass is an available alternative resource which may be converted by flash pyrolysis to produce a crude liquid product that can be used directly to substitute for conventional fossil fuels or upgraded to a higher quality fuel. Both the crude and upgraded products may be utilised for power generation. A computer program, BLUNT, has been developed to model the flash pyrolysis of biomass with subsequent upgrading, refining or power production. The program assesses and compares the economic and technical opportunities for biomass thermochemical conversion on the same basis. BLUNT works by building up a selected processing route from a number of process steps through which the material passes sequentially. Each process step has a step model that calculates the mass and energy balances, the utilities usage and the capital cost for that step of the process. The results of the step models are combined to determine the performance of the whole conversion route. Sample results from the modelling are presented in this thesis. Due to the large number of possible combinations of feeds, conversion processes, products and sensitivity analyses a complete set of results is impractical to present in a single publication. Variation of the production costs for the available products have been illustrated based on the cost of a wood feedstock. The effect of selected macroeconomic factors on the production costs of bio-diesel and gasoline are also given.
Resumo:
As an alternative fuel for compression ignition engines, plant oils are in principle renewable and carbon-neutral. However, their use raises technical, economic and environmental issues. A comprehensive and up-to-date technical review of using both edible and non-edible plant oils (either pure or as blends with fossil diesel) in CI engines, based on comparisons with standard diesel fuel, has been carried out. The properties of several plant oils, and the results of engine tests using them, are reviewed based on the literature. Findings regarding engine performance, exhaust emissions and engine durability are collated. The causes of technical problems arising from the use of various oils are discussed, as are the modifications to oil and engine employed to alleviate these problems. The review shows that a number of plant oils can be used satisfactorily in CI engines, without transesterification, by preheating the oil and/or modifying the engine parameters and the maintenance schedule. As regards life-cycle energy and greenhouse gas emission analyses, these reveal considerable advantages of raw plant oils over fossil diesel and biodiesel. Typical results show that the life-cycle output-to-input energy ratio of raw plant oil is around 6 times higher than fossil diesel. Depending on either primary energy or fossil energy requirements, the life-cycle energy ratio of raw plant oil is in the range of 2–6 times higher than corresponding biodiesel. Moreover, raw plant oil has the highest potential of reducing life-cycle GHG emissions as compared to biodiesel and fossil diesel.
Resumo:
This paper studies the characteristics of intermediate pyrolysis oils derived from sewage sludge and de-inking sludge (a paper industry residue), with a view to their use as fuels in a diesel engine. The feedstocks were dried and pelletised, then pyrolysed in the Pyroformer intermediate pyrolysis system. The organic fraction of the oils was separated from the aqueous phase and characterised. This included elemental and compositional analysis, heating value, cetane index, density, viscosity, surface tension, flash point, total acid number, lubricity, copper corrosion, water, carbon residue and ash content. Most of these results are compared with commercial diesel and biodiesel. Both pyrolysis oils have high carbon and hydrogen contents and their higher heating values compare well with biodiesel. The water content of the pyrolysis oils is reasonable and the flash point is found to be high. Both pyrolysis oils have good lubricity, but show some corrosiveness. Cetane index is reduced, which may influence ignition. Also viscosity is increased, which may influence atomisation quality. Carbon residue and ash content are both high, indicating potential deposition problems. Compared with de-inking sludge pyrolysis oil (DSPO), sewage sludge pyrolysis oil (SSPO) has a higher heating value, but higher corrosiveness and viscosity. The conclusions are that both intermediate pyrolysis oils will be able to provide sufficient heat when used in diesel engine; however poor combustion and carbon deposition may be encountered. Blending of these pyrolysis oils with diesel or biodiesel could overcome these problems and is recommended for further investigation.
Resumo:
Liquids and gases produced through biomass pyrolysis have potential as renewable fuels to replace fossil fuels in conventional internal combustion engines. This review compares the properties of pyrolysis fuels, produced from a variety of feedstocks and using different pyrolysis techniques, against those of fossil fuels. High acidity, the presence of solid particles, high water content, high viscosity, storage and thermal instability, and low energy content are typical characteristics of pyrolysis liquids. A survey of combustion, performance and exhaust emission results from the use of pyrolysis liquids (both crude and up-graded) in compression ignition engines is presented. With only a few exceptions, most authors have reported difficulties associated with the adverse properties of pyrolysis liquids, including: corrosion and clogging of the injectors, long ignition delay and short combustion duration, difficulty in engine start-up, unstable operation, coking of the piston and cylinders and subsequent engine seizure. Pyrolysis gas can be used more readily, either in spark ignition or compression ignition engines; however, NO reduction techniques are desirable. Various approaches to improve the properties of pyrolysis liquids are discussed and a comparison of the properties of up-graded vs. crude pyrolysis liquid is included. Further developments in up-gradation techniques, such as hydrocracking and bio-refinery approaches, could lead to the production of green diesel and green gasoline. Modifications required to engines for use with pyrolysis liquids, for example in the fuel supply and injection systems, are discussed. Storage stability and economic issues are also reviewed. Our study presents recent progress and important R&D areas for successful future use of pyrolysis fuels in internal combustion engines.
Resumo:
We describe a polygeneration system that can run on neat plant oils, such as Jatropha and Pongamia, or standard diesel fuel. A prototype has been constructed using a compression ignition engine of 9.9 kW shaft output. It consumes 3 L/h of fuel and will produce 40 kg/h of ice by means of an adsorption refrigerator powered from the engine jacket heat. Steaming of rice, deep and shallow frying, and other types of food preparation heated by the exhaust gas have been demonstrated. In addition, the feasibility of producing distilled water by means of multiple-effect distillation powered by the engine waste heat is shown. Overall plant efficiency and potential savings in greenhouse gas emissions are discussed. © 2012 Elsevier Ltd.
Resumo:
Currently, the main source for the production of liquid transportation fuels is petroleum, the continued use of which faces many challenges including depleting oil reserves, significant oil price rises, and environmental concerns over global warming which is widely believed to be due to fossil fuel derived CO2 emissions and other greenhouse gases. In this respect, lignocellulosic or plant biomass is a particularly interesting resource as it is the only renewable source of organic carbon that can be converted into liquid transportation fuels. The gasification of biomass produces syngas which can then be converted into synthetic liquid hydrocarbon fuels by means of the Fischer-Tropsch (FT) synthesis. This process has been widely considered as an attractive option for producing clean liquid hydrocarbon fuels from biomass that have been identified as promising alternatives to conventional fossil fuels like diesel and kerosene. The resulting product composition in FT synthesis is influenced by the type of catalyst and the reaction conditions that are used in the process. One of the issues facing this conversion process is the development of a technology that can be scaled down to match the scattered nature of biomass resources, including lower operating pressures, without compromising liquid composition. The primary aims of this work were to experimentally explore FT synthesis at low pressures for the purpose of process down-scaling and cost reduction, and to investigate the potential for obtaining an intermediate FT synthetic crude liquid product that can be integrated into existing refineries under the range of process conditions employed. Two different fixed-bed micro-reactors were used for FT synthesis; a 2cm3 reactor at the University of Rio de Janeiro (UFRJ) and a 20cm3 reactor at Aston University. The experimental work firstly involved the selection of a suitable catalyst from three that were available. Secondly, a parameter study was carried out on the 20cm3 reactor using the selected catalyst to investigate the influence of reactor temperature, reactor pressure, space velocity, the H2/CO molar ratio in the feed syngas and catalyst loading on the reaction performance measured as CO conversion, catalyst stability, product distribution, product yields and liquid hydrocarbon product composition. From this parameter study a set of preferred operating conditions was identified for low pressure FT synthesis. The three catalysts were characterized using BET, XRD, TPR and SEM. The catalyst selected was an unpromoted Co/Al2O3 catalyst. FT synthesis runs on the 20cm3 reactor at Aston were conducted for 48 hours. Permanent gases and light hydrocarbons (C1-C5) were analysed in an online GC-TCD/FID at hourly intervals. The liquid hydrocarbons collected were analyzed offline using GC-MS for determination of fuel composition. The parameter study showed that CO conversion and liquid hydrocarbon yields increase with increasing reactor pressure up to around 8 bar, above which the effect of pressure is small. The parameters that had the most significant influence on CO conversion, product selectivity and liquid hydrocarbon yields were reactor temperature and catalyst loading. The preferred reaction conditions identified for this research were: T = 230ºC, P = 10 bar, H2/CO = 2.0, WHSV = 2.2 h-1, and catalyst loading = 2.0g. Operation in the low range of pressures studied resulted in low CO conversions and liquid hydrocarbon yields, indicating that low pressure BTL-FT operation may not be industrially viable as the trade off in lower CO conversions and once-through liquid hydrocarbon product yields has to be carefully weighed against the potential cost savings resulting from process operation at lower pressures.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT