2 resultados para Fruits average mass
em Aston University Research Archive
Resumo:
A diffusion-controlled electrochemical mass transfer technique has been employed in making local measurements of shell-side coefficients in segmentally baffled shell and tube heat exchangers. Corresponding heat transfer data are predicted through the Chilton and Colburn heat and mass transfer analogy. Mass transfer coefficients were measured for baffle spacing lengths of individual tubes in an internal baffle compartment. Shell-side pressure measurements were also made. Baffle compartment average coefficients derived from individual tube coefficients are shown to be in good agreement with reported experimental bundle average heat transfer data for a heat exchanger model of similar geometry. Mass transfer coefficients of individual tubes compare favourably with those obtained previously by another mass transfer technique. Experimental data are reported for a variety of segmental baffle configurations over the shell-side Reynolds number range 100 to 42 000. Baffles with zero clearances were studied at three baffle cuts and two baffle spacings. Baffle geometry is shown to have a large effect on the distribution of tube coefficients within the baffle compartment. Fluid "jetting" is identified with some baffle configurations. No simple characteristic velocity is found to correlate zonal or baffle compartment average mass transfer data for the effect of both baffle cut and baffle spacing. Experiments with baffle clearances typical of commercial heat exchangers are also reported. The effect of leakage streams associated with these baffles is identified. Investigations were extended to double segmental baffles for which no data had previously been published. The similarity in the shell-side characteristics of this baffle arrangement and two parallel single segmental baffle arrangements is demonstrated. A general relationship between the shell-side mass transfer performance and pressure drop was indicated by the data for all the baffle configurations examined.
Resumo:
The objectives of this research were to investigate the perforamnce of a rubberwood gasifier and engine with electricity generation and to identify opportunities for the implementation of such a system in Malaysia. The experimental work included the design, fabrication and commissioning of a throated downdraft gasifier in Malaysia. The gasifier was subsequently used to investigate the effect of moisture content, dry wood capacity and particle size of rubberwood on gasifier performance. Additional experiments were also conducted to investigate the influence of two different nozzle numbers and two different throat diameters on tar cracking. A total of 101 runs were completed during the duration of the research. From the experimental data, the average mass balance was found to be 92.65%. The average energy balance over the gasifier to hot raw gas was 98.7%, to cold clean gas was 102.4% and over the complete system was 101.9%. The heat loss from the gasifier was estimated to range from 10-26% of the chemical energy of the feedstock. From the downstream operation, the heat loss was estimated to range from 17-37% of the chemical energy of rubberwood feedstock. The maximum throughput for stable operation was found to be 60-70% of the maximum dry wood capacity. The gasifier was found to have a maximum turndown ratio of 5:1. It is also postulated that the phenomenon of turndown of the gasifier is due to a `bubble theory' occurring at the gasification zone, and this hypothesis is explained. For stable power output, the working range of the engine was found to be 5-33.5 kWe. The thermal efficiency and diesel displacement of the engine was found to be 17-18% and 65-70% respectively. The research also showed that rubberwood gasification in Malaysia is feasible if the price of diesel is above MR35/l and the price of wood is below MR120/tonne.