5 resultados para Fresnel cogenerazione CPV celle multigiunzione
em Aston University Research Archive
Resumo:
This paper presents a new method for the optimisation of the mirror element spacing arrangement and operating temperature of linear Fresnel reflectors (LFR). The specific objective is to maximise available power output (i.e. exergy) and operational hours whilst minimising cost. The method is described in detail and compared to an existing design method prominent in the literature. Results are given in terms of the exergy per total mirror area (W/m2) and cost per exergy (US $/W). The new method is applied principally to the optimisation of an LFR in Gujarat, India, for which cost data have been gathered. It is recommended to use a spacing arrangement such that the onset of shadowing among mirror elements occurs at a transversal angle of 45°. This results in a cost per exergy of 2.3 $/W. Compared to the existing design approach, the exergy averaged over the year is increased by 9% to 50 W/m2 and an additional 122 h of operation per year are predicted. The ideal operating temperature at the surface of the absorber tubes is found to be 300 °C. It is concluded that the new method is an improvement over existing techniques and a significant tool for any future design work on LFR systems
Resumo:
A compact and low cost fiber sensor based on microfiber with Fresnel reflection is proposed and demonstrated for simultaneous measurement of refractive index (RI) and temperature with high sensitivities. © OSA 2015.
Resumo:
Solar energy is the most abundant, widely distributed and clean renewable energy resource. Since the insolation intensity is only in the range of 0.5 - 1.0 kW/m2, solar concentrators are required for attaining temperatures appropriate for medium and high temperature applications. The concentrated energy is transferred through an absorber to a thermal fluid such as air, water or other fluids for various uses. This paper describes design and development of a 'Linear Fresnel Mirror Solar Concentrator' (LFMSC) using long thin strips of mirrors to focus sunlight on to a fixed receiver located at a common focal line. Our LFMSC system comprises a reflector (concentrator), receiver (target) and an innovative solar tracking mechanism. Reflectors are mirror strips, mounted on tubes which are fixed to a base frame. The tubes can be rotated to align the strips to focus solar radiation on the receiver (target). The latter comprises a coated tube carrying water and covered by a glass plate. This is mounted at an elevation of few meters above the horizontal, parallel to the plane of the mirrors. The reflector is oriented along north-south axis. The most difficult task is tracking. This is achieved by single axis tracking using a four bar link mechanism. Thus tracking has been made simple and easy to operate. The LFMSC setup is used for generating steam for a variety of applications. © 2013 The Authors. Published by Elsevier Ltd.
Resumo:
This paper outlines a novel elevation linear Fresnel reflector (ELFR) and presents and validates theoretical models defining its thermal performance. To validate the models, a series of experiments were carried out for receiver temperatures in the range of 30-100 °C to measure the heat loss coefficient, gain in heat transfer fluid (HTF) temperature, thermal efficiency, and stagnation temperature. The heat loss coefficient was underestimated due to the model exclusion of collector end heat losses. The measured HTF temperature gains were found to have a good correlation to the model predictions - less than a 5% difference. In comparison to model predictions for the thermal efficiency and stagnation temperature, measured values had a difference of -39% to +31% and 22-38%, respectively. The difference between the measured and predicted values was attributed to the low-temperature region for the experiments. It was concluded that the theoretical models are suitable for examining linear Fresnel reflector (LFR) systems and can be adopted by other researchers.
Resumo:
A compact and low cost fiber sensor based on single multimode microfiber with Fresnel reflection is proposed and demonstrated for simultaneous measurement of refractive index and temperature. The sensor is fabricated with two simple steps including fiber tapering and then fiber endface cleaving. The reflection spectrum is an intensity modulated interference spectrum, as the tapered fiber generates interference pattern and the cleaved endface provides intensity modulation. By demodulating the fringe power and free spectrum range (FSR) of the spectrum, RI sensitivities of -72.247dB/RIU and 68.122nm/RIU, as well as temperature sensitivities of 0.0283dB/degrees C and -17pm/degrees C are obtained. Further, the sensing scheme could also provide the feasibility to construct a more compact sensing probe for dual-paramters measurement, which has great potential in bio/chemical detection.