12 resultados para Frequency-time transformation
em Aston University Research Archive
Resumo:
Frequency, time and places of charging and discharging have critical impact on the Quality of Experience (QoE) of using Electric Vehicles (EVs). EV charging and discharging scheduling schemes should consider both the QoE of using EV and the load capacity of the power grid. In this paper, we design a traveling plan-aware scheduling scheme for EV charging in driving pattern and a cooperative EV charging and discharging scheme in parking pattern to improve the QoE of using EV and enhance the reliability of the power grid. For traveling planaware scheduling, the assignment of EVs to Charging Stations (CSs) is modeled as a many-to-one matching game and the Stable Matching Algorithm (SMA) is proposed. For cooperative EV charging and discharging in parking pattern, the electricity exchange between charging EVs and discharging EVs in the same parking lot is formulated as a many-to-many matching model with ties, and we develop the Pareto Optimal Matching Algorithm (POMA). Simulation results indicates that the SMA can significantly improve the average system utility for EV charging in driving pattern, and the POMA can increase the amount of electricity offloaded from the grid which is helpful to enhance the reliability of the power grid.
Resumo:
The frequency, time and places of charging have large impact on the Quality of Experience (QoE) of EV drivers. It is critical to design effective EV charging scheduling system to improve the QoE of EV drivers. In order to improve EV charging QoE and utilization of CSs, we develop an innovative travel plan aware charging scheduling scheme for moving EVs to be charged at Charging Stations (CS). In the design of the proposed charging scheduling scheme for moving EVs, the travel routes of EVs and the utility of CSs are taken into consideration. The assignment of EVs to CSs is modeled as a two-sided many-to-one matching game with the objective of maximizing the system utility which reflects the satisfactory degrees of EVs and the profits of CSs. A Stable Matching Algorithm (SMA) is proposed to seek stable matching between charging EVs and CSs. Furthermore, an improved Learning based On-LiNe scheduling Algorithm (LONA) is proposed to be executed by each CS in a distributed manner. The performance gain of the average system utility by the SMA is up to 38.2% comparing to the Random Charging Scheduling (RCS) algorithm, and 4.67% comparing to Only utility of Electric Vehicle Concerned (OEVC) scheme. The effectiveness of the proposed SMA and LONA is also demonstrated by simulations in terms of the satisfactory ratio of charging EVs and the the convergence speed of iteration.
Resumo:
At present there is no standard assessment method for rating and comparing the quality of synthesized speech. This study assesses the suitability of Time Frequency Warping (TFW) modulation for use as a reference device for assessing synthesized speech. Time Frequency Warping modulation introduces timing errors into natural speech that produce perceptual errors similar to those found in synthetic speech. It is proposed that TFW modulation used in conjunction with a listening effort test would provide a standard assessment method for rating the quality of synthesized speech. This study identifies the most suitable TFW modulation variable parameter to be used for assessing synthetic speech and assess the results of several assessment tests that rate examples of synthesized speech in terms of the TFW variable parameter and listening effort. The study also attempts to identify the attributes of speech that differentiate synthetic, TFW modulated and natural speech.
Resumo:
In the face of global population growth and the uneven distribution of water supply, a better knowledge of the spatial and temporal distribution of surface water resources is critical. Remote sensing provides a synoptic view of ongoing processes, which addresses the intricate nature of water surfaces and allows an assessment of the pressures placed on aquatic ecosystems. However, the main challenge in identifying water surfaces from remotely sensed data is the high variability of spectral signatures, both in space and time. In the last 10 years only a few operational methods have been proposed to map or monitor surface water at continental or global scale, and each of them show limitations. The objective of this study is to develop and demonstrate the adequacy of a generic multi-temporal and multi-spectral image analysis method to detect water surfaces automatically, and to monitor them in near-real-time. The proposed approach, based on a transformation of the RGB color space into HSV, provides dynamic information at the continental scale. The validation of the algorithm showed very few omission errors and no commission errors. It demonstrates the ability of the proposed algorithm to perform as effectively as human interpretation of the images. The validation of the permanent water surface product with an independent dataset derived from high resolution imagery, showed an accuracy of 91.5% and few commission errors. Potential applications of the proposed method have been identified and discussed. The methodology that has been developed 27 is generic: it can be applied to sensors with similar bands with good reliability, and minimal effort. Moreover, this experiment at continental scale showed that the methodology is efficient for a large range of environmental conditions. Additional preliminary tests over other continents indicate that the proposed methodology could also be applied at the global scale without too many difficulties
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
A possibility of a strong change of an electromagnetic signal by a short sequence of time cycles of pulses that modulate the medium parameters is shown. The backward wave is demonstrated to be an inevitable result of the medium time change. Dependence of the relation between backward and forward waves on the parameters of the medium modulation is investigated. The finite statistical complexity of the electromagnetic signal transformed by a finite sequence of modulating cycles is calculated. Increase of the complexity with the number of cycles is shown.
Resumo:
We report high-resolution real-time measurements of spectrum evolution in a fibre. The proposed method combines optical heterodyning with a technique of spatio-temporal intensity measurements revealing fast spectral dynamics of cavity-based systems.
Resumo:
We propose a robust adaptive time synchronization and frequency offset estimation method for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems by applying electrical dispersion pre-compensation (pre-EDC) to the pilot symbol. This technique effectively eliminates the timing error due to the fiber chromatic dispersion, thus increasing significantly the accuracy of the frequency offset estimation process and improving the overall system performance. In addition, a simple design of the pilot symbol is proposed for full-range frequency offset estimation. This pilot symbol can also be used to carry useful data to effectively reduce the overhead due to time synchronization by a factor of 2.
Resumo:
Purpose: This paper extends the use of Radio Frequency Identification (RFID) data for accounting of warehouse costs and services. Time Driven Activity Based Costing (TDABC) methodology is enhanced with the real-time collected RFID data about duration of warehouse activities. This allows warehouse managers to have accurate and instant calculations of costs. The RFID enhanced TDABC (RFID-TDABC) is proposed as a novel application of the RFID technology. Research Approach: Application of RFID-TDABC in a warehouse is implemented on warehouse processes of a case study company. Implementation covers receiving, put-away, order picking, and despatching. Findings and Originality: RFID technology is commonly used for the identification and tracking items. The use of the RFID generated information with the TDABC can be successfully extended to the area of costing. This RFID-TDABC costing model will benefit warehouse managers with accurate and instant calculations of costs. Research Impact: There are still unexplored benefits to RFID technology in its applications in warehousing and the wider supply chain. A multi-disciplinary research approach led to combining RFID technology and TDABC accounting method in order to propose RFID-TDABC. Combining methods and theories from different fields with RFID, may lead researchers to develop new techniques such as RFID-TDABC presented in this paper. Practical Impact: RFID-TDABC concept will be of value to practitioners by showing how warehouse costs can be accurately measured by using this approach. Providing better understanding of incurred costs may result in a further optimisation of warehousing operations, lowering costs of activities, and thus provide competitive pricing to customers. RFID-TDABC can be applied in a wider supply chain.