6 resultados para Frequency Locking
em Aston University Research Archive
Resumo:
Interferometric sensors for slowly varying measurands, such as temperature or pressure, require a long term frequency stability of the source. We describe a system for frequency locking a laser diode to an atomic transition in a hollow cathode lamp using the optogalvanic effect.
Resumo:
We study a small circuit of coupled nonlinear elements to investigate general features of signal transmission through networks. The small circuit itself is perceived as building block for larger networks. Individual dynamics and coupling are motivated by neuronal systems: We consider two types of dynamical modes for an individual element, regular spiking and chattering and each individual element can receive excitatory and/or inhibitory inputs and is subjected to different feedback types (excitatory and inhibitory; forward and recurrent). Both, deterministic and stochastic simulations are carried out to study the input-output relationships of these networks. Major results for regular spiking elements include frequency locking, spike rate amplification for strong synaptic coupling, and inhibition-induced spike rate control which can be interpreted as a output frequency rectification. For chattering elements, spike rate amplification for low frequencies and silencing for large frequencies is characteristic
Resumo:
We describe the technique allowing for generation of low-noise wider frequency combs and pulses of shorter duration in quantum-dot mode-locked lasers. We compare experimentally noise stabilization techniques in semiconductor modelocked lasers. We discuss the benefits of electrical modulation of the laser absorber voltage (hybrid mode-locking), combination of hybrid mode-locking with optical injection seeding from the narrow linewidth continues wave master source and optical injection seeding of two coherent sidebands separated by the laser repetition rate. © 2014 SPIE.
Resumo:
Passively mode locked fibre lasers have a variety of applications ranging from telecommunication to medical photonics. Carbon nanotubes (CNTs) have attracted recently a great deal of attention as a promising solution for saturable absorber elements required for laser mode locking (see e.g. [1-3] and references therein). CNTs can be used as a saturable absorber in passively mode locked fibre laser directly [1,2] or as a CNTs polymer composites [3]. An attractive feature of CNT-based solutions in fibre lasers is a possibility to maintain the compactness, robustness of all-fibre format and low cost through using all standard telecom compatible components. The two important technical challenges in such type of lasers are: (i) to achieve stable polarization properties of the generated radiation without using complex control elements, and, (ii) to avoid low frequency instabilities of the mode-locked pulse train. In this paper we report results of the experiments on mode-locked soliton fibre laser using the following standard components: 1m of highly doped erbium fibre (Liekki Er80-8/125) serves as the gain medium with nominal absorption of 80 dB/m at 1530 nm; a 976 nm laser diode providing up to 310mW power is used to pump the laser via a 980/1550 wavelength division multiplexing; an isolator is employed to ensure single direction oscillation; SMF-28 is used to create necessary amount of anomalous dispersion to form soliton pulse making the total cavity length around 7.83 m; the CNT-polyvinyl alcohol polymer saturable absorber sandwiched in the FC/PC connector is used as a mode-locker device (see [3] for details). © 2011 IEEE.