2 resultados para Free-Template
em Aston University Research Archive
Resumo:
Herein we demonstrate a facile template-free sonochemical strategy to synthesize mesoporous g-C3N4 with a high surface area and enhanced photocatalytic activity. The TEM and nitrogen adsorption–desorption studies confirm mesoporous structure in g-C3N4 body. The photocatalytic activity of mesoporous g-C3N4 is almost 5.5 times higher than that of bulk g-C3N4 under visible-light irradiation. The high photocatalytic performance of the mesoporous g-C3N4 was attributed to the much higher specific surface area, efficient adsorption ability and the unique interfacial mesoporous structure which can favour the absorption of light and separation of photoinduced electron–hole pairs more effectively. A possible photocatalytic mechanism was discussed by the radicals and holes trapping experiments. Interestingly, the synthesized mesoporous g-C3N4 possesses high reusability. Hence the mesoporous g-C3N4 can be a promising photocatalytic material for practical applications in water splitting as well as environmental remediation.
Resumo:
Herein, we demonstrate a template-free and eco-friendly strategy to synthesize hierarchical Ag3PO4 microcrystals with sharp corners and edges via silver–ammine complex at room temperature. The as-synthesized hierarchical Ag3PO4 microcrystals were characterized by X-ray diffraction, field-emission scanning electron microscope (FESEM), UV–vis diffuse reflectance spectroscopy (UV–vis DRS), BET surface area analyzer, and photoluminescence analysis (PL). Our results clearly indicated that the as-synthesized Ag3PO4 microcrystals possess a hierarchical structure with sharp corners and edges. More attractively, the adsorption ability and visible light photocatalytic activity of the as-synthesized hierarchical Ag3PO4 is much higher than that of conventional Ag3PO4.