6 resultados para Fractional Order Differentiator

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The letter presents a technique for Nth-order differentiation of periodic pulse train, which can simultaneously multiply the input repetition rate. This approach uses a single linearly chirped apodized fiber Bragg grating, which grating profile is designed to map the spectral response of the Nth-order differentiator, and the chirp introduces a dispersion that, besides space-to-frequency mapping, it also causes a temporal Talbot effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this letter we present a technique for the implementation of Nth-order ultrafast temporal differentiators. This technique is based on two oppositely chirped fiber Bragg gratings in which the grating profile maps the spectral response of the Nth-order differentiator. Examples of 1st, 2nd, and 4th order differentiators are designed and numerically simulated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate the possibility to use a fractional order of poling period of nonlinear crystal waveguides for tunable second harmonic generation. This approach allows one to extend wavelength coverage in the visible spectral range by frequency doubling in a single crystal waveguide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical differentiators constitute a basic device for analog all-optical signal processing [1]. Fiber grating approaches, both fiber Bragg grating (FBG) and long period grating (LPG), constitute an attractive solution because of their low cost, low insertion losses, and full compatibility with fiber optic systems. A first order differentiator LPG approach was proposed and demonstrated in [2], but FBGs may be preferred in applications with a bandwidth up to few nm because of the extreme sensitivity of LPGs to environmental fluctuations [3]. Several FBG approaches have been proposed in [3-6], requiring one or more additional optical elements to create a first-order differentiator. A very simple, single optical element FBG approach was proposed in [7] for first order differentiation, applying the well-known logarithmic Hilbert transform relation of the amplitude and phase of an FBG in transmission [8]. Using this relationship in the design process, it was theoretically and numerically demonstrated that a single FBG in transmission can be designed to simultaneously approach the amplitude and phase of a first-order differentiator spectral response, without need of any additional elements. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose and analyze a first-order optical differentiator based on a fiber Bragg grating (FBG) in transmission. It is shown in the examples that a simple uniform-period FBG in a very strong coupling regime (maximum reflectivity very close to 100%) can perform close to ideal temporal differentiation of the complex envelope of an arbitrary-input optical signal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the first experimental demonstration of single transmissive fiber Bragg grating implementation of a first-order optical differentiation. The device has been designed and fabricated, and the experimental results show a good performance over an operational bandwidth of ∼2 nm. © 2013 Optical Society of America.