4 resultados para Forecast models
em Aston University Research Archive
Resumo:
We use non-parametric procedures to identify breaks in the underlying series of UK household sector money demand functions. Money demand functions are estimated using cointegration techniques and by employing both the Simple Sum and Divisia measures of money. P-star models are also estimated for out-of-sample inflation forecasting. Our findings suggest that the presence of breaks affects both the estimation of cointegrated money demand functions and the inflation forecasts. P-star forecast models based on Divisia measures appear more accurate at longer horizons and the majority of models with fundamentals perform better than a random walk model.
Resumo:
Since wind at the earth's surface has an intrinsically complex and stochastic nature, accurate wind power forecasts are necessary for the safe and economic use of wind energy. In this paper, we investigated a combination of numeric and probabilistic models: a Gaussian process (GP) combined with a numerical weather prediction (NWP) model was applied to wind-power forecasting up to one day ahead. First, the wind-speed data from NWP was corrected by a GP, then, as there is always a defined limit on power generated in a wind turbine due to the turbine controlling strategy, wind power forecasts were realized by modeling the relationship between the corrected wind speed and power output using a censored GP. To validate the proposed approach, three real-world datasets were used for model training and testing. The empirical results were compared with several classical wind forecast models, and based on the mean absolute error (MAE), the proposed model provides around 9% to 14% improvement in forecasting accuracy compared to an artificial neural network (ANN) model, and nearly 17% improvement on a third dataset which is from a newly-built wind farm for which there is a limited amount of training data. © 2013 IEEE.
Resumo:
This paper presents some forecasting techniques for energy demand and price prediction, one day ahead. These techniques combine wavelet transform (WT) with fixed and adaptive machine learning/time series models (multi-layer perceptron (MLP), radial basis functions, linear regression, or GARCH). To create an adaptive model, we use an extended Kalman filter or particle filter to update the parameters continuously on the test set. The adaptive GARCH model is a new contribution, broadening the applicability of GARCH methods. We empirically compared two approaches of combining the WT with prediction models: multicomponent forecasts and direct forecasts. These techniques are applied to large sets of real data (both stationary and non-stationary) from the UK energy markets, so as to provide comparative results that are statistically stronger than those previously reported. The results showed that the forecasting accuracy is significantly improved by using the WT and adaptive models. The best models on the electricity demand/gas price forecast are the adaptive MLP/GARCH with the multicomponent forecast; their MSEs are 0.02314 and 0.15384 respectively.
Resumo:
The predictive accuracy of competing crude-oil price forecast densities is investigated for the 1994–2006 period. Moving beyond standard ARCH type models that rely exclusively on past returns, we examine the benefits of utilizing the forward-looking information that is embedded in the prices of derivative contracts. Risk-neutral densities, obtained from panels of crude-oil option prices, are adjusted to reflect real-world risks using either a parametric or a non-parametric calibration approach. The relative performance of the models is evaluated for the entire support of the density, as well as for regions and intervals that are of special interest for the economic agent. We find that non-parametric adjustments of risk-neutral density forecasts perform significantly better than their parametric counterparts. Goodness-of-fit tests and out-of-sample likelihood comparisons favor forecast densities obtained by option prices and non-parametric calibration methods over those constructed using historical returns and simulated ARCH processes. © 2010 Wiley Periodicals, Inc. Jrl Fut Mark 31:727–754, 2011