4 resultados para Follicle Stimulating Hormone

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ßElucidating some molecular mechanisms and biochemistry of brain tumours is an important step towards the development of adjuvant medical therapies. The present study concentrates on cholecystokinin (CCK), a gut-brain peptide that has been described to be able to induce mitosis of rat gliomas as well as hormone secretion by the anterior pituitary, via the CCK-B receptor. The significance of a polymorphism in the growth hormone releasing hormone (GHRH) receptor (GHRH-R) gene was also determined. Finally, defects in the ß-catenin gene, an important component of the developmental pathway, in a sub-set of craniopharyngiomas were investigated. Reverse transcription-polymerase chain reaction (RT-PCR), restriction digestion analysis and direct sequencing demonstrated expression of CCK peptide itself and its A and B receptors by human gliomas, meningiomas and pituitary tumours. CCK peptides stimulated growth of cultured gliomas and meningiomas as well as in vitro hormone secretion [growth hormone (GH), luteinizing hormone (LH) and follicle stimulating hormone (FSH)] by human pituitary tumours. These biological effects were reduced or abolished by CCK antagonists. In addition, an antibody to CCK reduced mitosis by gliomas and meningiomas, and the same antibody inhibited hormone secretion by cultured human pituitary tumours. CCK peptides stimulated phosphatidylinositol (PI) hydrolysis, indicating coupling of the CCK receptors to phopsholipase C. Cyclic AMP was unaffected. In addition, caspase-3 activity was significantly and markedly increased, whilst proteasome activity was decreased. Taken together, these results may indicate an autocrine/paracrine role of CCK in the control of growth and/or functioning of gliomas, meningiomas and pituitary tumours. Primer induced restriction analysis (PIRA) of a rarer and alternative polymorphism in the GHRH-R receptor, in which Thr replaces Ala at codon 57, in human GH-secreting pituitary tumours was investigated. Whilst the rarer form correlated with an increased response of the pituitary cells to GHRH in vitro, allele distribution studies revealed that it is unlikely that the polymorphism contributes to increased risk of developing GH-secreting tumours and therefore acromegaly. Further findings of this study, using PCR and direct sequencing, were the demonstration of an association between b-catenin gene alterations and craniopharyngiomas of the adamantinomatous type. Since this gene product is involved with development, these results suggest that p-catenin mutations may contribute to the initiation and subsequent growth of congenital adamantinomatous craniopharyngiomas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Widespread use of automated sensitive assays for thyroid hormones and thyroid-stimulating hormone (TSH) has increased identification of mild thyroid dysfunction, especially in elderly patients. The clinical significance of this dysfunction, however, remains uncertain, and associations with cognitive impairment, depression, and anxiety are unconfirmed. Objective: To determine the association between mild thyroid dysfunction and cognition, depression, and anxiety in elderly persons. Design: Cross-sectional study. Associations were explored through mixed-model analyses. Setting: Primary care practices in central England. Patients: 5865 patients 65 years of age or older with no known thyroid disease who were recruited from primary care registers. Measurements: Serum TSH and free thyroxine (T4) were measured. Depression and anxiety were assessed by using the Hospital Anxiety and Depression Scale (HADS), and cognitive functioning was established by using the Middlesex Elderly Assessment of Mental State and the Folstein Mini-Mental State Examination. Comorbid conditions, medication use, and sociodemographic profiles were recorded. Results: 295 patients met the criteria for subclinical thyroid dysfunction (127 were hyperthyroid, and 168 were hypothyroid). After confounding variables were controlled for, statistically significant associations were seen between anxiety (HADS score) and TSH level (P = 0.013) and between cognition and both TSH and free T4 levels. The magnitude of these associations lacked clinical relevance: A 50-mIU/L increase in the TSH level was associated with a 1-point reduction in the HADS anxiety score, and a 1-point increase in the Mini-Mental State Examination score was associated with an increase of 50 mIU/L in the TSH level or 25 pmol/L in the free T4 level. Limitations: Because of the low participation rate, low prevalence of subclinical thyroid dysfunction, and other unidentified recruitment biases, participants may not be representative of the elderly population. Conclusions: After the confounding effects of comorbid conditions and use of medication were controlled for, subclinical thyroid dysfunction was not associated with depression, anxiety, or cognition. © 2006 American College of Physicians.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of tic-like movements in mice has demonstrated close parallels both in characteristics and in pharmacology with the tics which occur in TS. Head-shakes and/or other tic-like behaviours occurring spontaneously or induced by the selective 5-HT2/1C agonist DOI, alpha-melanocyte stimulating hormone, adrenocorticotrophic hormone (1-39), thyrotropin releasing hormone, or RX336-M were blocked when tested with neuroleptics such as haloperidol and/or the alpha-2 adrenoceptor agonist clonidine. The selective dopamine D1 antagonists SCH23390 and SCH39166 dose-dependently blocked spontaneous and DOI head-shakes but the selective dopamine D2 antagonists sulpiride and raclopride were ineffective. The 5-HT1A receptor agonists 8-OH-DPAT, ipsapirone, gepirone, MDL 73005EF and buspirone (i.p) dose-dependently blocked DOI head-shakes, pindolol blocked the inhibitory effect of 8-OH-DPAT on DOI head-shakes. Parachlorophenylalanine blocked the inhibitory effect of 8-OH-DPAT and buspirone, suggesting that the 5-HT1A receptor involved is located presynaptically. The alpha-2 adrenoceptor antagonists yohimbine, idazoxan, 1-PP and RX811059 prevented the inhibitory effect of 8-OH-DPAT on DOI head-shakes suggesting that this 5-HT1A - 5-HT2 receptor interaction is under the modulatory control of adrenoceptors. Because kynurenine has previously been found to potentiate head-shaking, plasma kynurenine concentrations were measured in seven TS patients and were significantly higher than controls, but neopterin and biopterin were unchanged. The relationship between tic-like movements in rodents and their implications for understanding the aetiology and treatment of TS is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transgenic BALB/c mice that express intrathyroidal human thyroid stimulating hormone receptor (TSHR) A-subunit, unlike wild-type (WT) littermates, develop thyroid lymphocytic infiltration and spreading to other thyroid autoantigens after T regulatory cell (Treg) depletion and immunization with human thyrotropin receptor (hTSHR) adenovirus. To determine if this process involves intramolecular epitope spreading, we studied antibody and T cell recognition of TSHR ectodomain peptides (A–Z). In transgenic and WT mice, regardless of Treg depletion, TSHR antibodies bound predominantly to N-terminal peptide A and much less to a few downstream peptides. After Treg depletion, splenocytes from WT mice responded to peptides C, D and J (all in the A-subunit), but transgenic splenocytes recognized only peptide D. Because CD4+ T cells are critical for thyroid lymphocytic infiltration, amino acid sequences of these peptides were examined for in silico binding to BALB/c major histocompatibility complex class II (IA–d). High affinity subsequences (inhibitory concentration of 50% < 50 nm) are present in peptides C and D (not J) of the hTSHR and mouse TSHR equivalents. These data probably explain why transgenic splenocytes do not recognize peptide J. Mouse TSHR mRNA levels are comparable in transgenic and WT thyroids, but only transgenics have human A-subunit mRNA. Transgenic mice can present mouse TSHR and human A-subunit-derived peptides. However, WT mice can present only mouse TSHR, and two to four amino acid species differences may preclude recognition by CD4+ T cells activated by hTSHR-adenovirus. Overall, thyroid lymphocytic infiltration in the transgenic mice is unrelated to epitopic spreading but involves human A-subunit peptides for recognition by T cells activated using the hTSHR.