10 resultados para Flying Dutchman
em Aston University Research Archive
Resumo:
Many passengers experience discomfort during flight because of the effect of low humidity on the skin, eyes, throat, and nose. In this physiological study, we have investigated whether flight and low humidity also affect the tympanic membrane. From previous studies, a decrease in admittance of the tympanic membrane through drying might be expected to affect the buffering capacity of the middle ear and to disrupt automatic pressure regulation. This investigation involved an observational study onboard an aircraft combined with experiments in an environmental chamber, where the humidity could be controlled but could not be made to be as low as during flight. For the flight study, there was a linear relationship between the peak compensated static admittance of the tympanic membrane and relative humidity with a constant of proportionality of 0.00315 mmho/% relative humidity. The low humidity at cruise altitude (minimum 22.7 %) was associated with a mean decrease in admittance of about 20 % compared with measures in the airport. From the chamber study, we further found that a mean decrease in relative humidity of 23.4 % led to a significant decrease in mean admittance by 0.11 mmho [F(1,8) = 18.95, P = 0.002], a decrease of 9.4 %. The order of magnitude for the effect of humidity was similar for the flight and environmental chamber studies. We conclude that admittance changes during flight were likely to have been caused by the low humidity in the aircraft cabin and that these changes may affect the automatic pressure regulation of the middle ear during descent. © 2013 Association for Research in Otolaryngology.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Clostridium difficile is a bacterial healthcare-associated infection, which houseflies Musca domestica may transfer due to their synanthropic nature. The aims of this thesis were to determine the ability of M. domestica to transfer C. difficile mechanically and to collect and identify flying insects in UK hospitals and classify any associated bacteria. M. domestica exposed to independent suspensions of vegetative cells and spores of C. difficile were able to mechanically transfer the bacteria on to agar for up to 4 hours following exposure. C. difficile could be recovered from fly excreta for 96hrs and was isolated from the M. domestica alimentary canal. Also confirmed was the carriage of C. difficile by M. domestica larvae, although it was not retained in the pupae or in the adults that subsequently developed. Flying insects were collected from ultra-violet light flytraps in hospitals. Flies (order Diptera) were the most commonly identified. Chironomidae were the most common flies, Calliphora vicina were the most common synanthropic fly and ‘drain flies’ were surprisingly numerous and represent an emerging problem in hospitals. External washings and macerates of flying insects were prepared and inoculated onto a variety of agars and following incubation bacterial colonies identified by biochemical tests. A variety of flying insects, including synanthropic flies (e.g. M. domestica and C. vicina) collected from UK hospitals harboured pathogenic bacteria of different species. Enterobacteriaceae were the group of bacteria most commonly isolated, followed by Bacillus spp, Staphylococci, Clostridia, Streptococci and Micrococcus spp. This study highlights the potential for M. domestica to contribute to environmental persistence and spread of C. difficile in hospitals. Also illustrated is the potential for flying insects to contribute to environmental persistence and spread of other pathogenic bacteria in hospitals and therefore the need to implement pest control as part of infection control strategies.
Resumo:
This paper reports on the development of elements of an e-supply chain management system for managing maintenance, repair and overhaul (MRO) relationships in the aerospace industry. A standard systems development methodology has been followed to produce a process model (i.e. the AMSCR model); an information model (i.e. business rules) and a computerised information management capability (i.e. automated optimisation). The proof of concept for this web-based MRO supply chain system has been established through the collaboration with a sample of the different types of supply chain members. The proven benefit is a reduction in the stock-holding costs for the whole supply chain whilst also minimising non-flying time of the aircraft that the supply chain supports. This type of system is now vital in an industry that has continuously decreasing profit margins, which in turn means pressure to reduce servicing times and increase the interval between maintenance actions.
Resumo:
Purpose - To develop a systems strategy for supply chain management in aerospace maintenance, repair and overhaul (MRO). Design/methodology/approach - A standard systems development methodology has been followed to produce a process model (i.e. the AMSCR model); an information model (i.e. business rules) and a computerised information management capability (i.e. automated optimisation). Findings - The proof of concept for this web-based MRO supply chain system has been established through collaboration with a sample of the different types of supply chain members. The proven benefits comprise new potential to minimise the stock holding costs of the whole supply chain whilst also minimising non-flying time of the aircraft that the supply chain supports. Research limitations/implications - The scale of change needed to successfully model and automate the supply chain is vast. This research is a limited-scale experiment intended to show the power of process analysis and automation, coupled with strategic use of management science techniques, to derive tangible business benefit. Practical implications - This type of system is now vital in an industry that has continuously decreasing profit margins; which in turn means pressure to reduce servicing times and increase the mean time between them. Originality/value - Original work has been conducted at several levels: process, information and automation. The proof-of-concept system has been applied to an aircraft MRO supply chain. This is an area of research that has been neglected, and as a result is not well served by current systems solutions. © Emerald Group Publishing Limited.
Resumo:
Issues of wear and tribology are increasingly important in computer hard drives as slider flying heights are becoming lower and disk protective coatings thinner to minimise spacing loss and allow higher areal density. Friction, stiction and wear between the slider and disk in a hard drive were studied using Accelerated Friction Test (AFT) apparatus. Contact Start Stop (CSS) and constant speed drag tests were performed using commercial rigid disks and two different air bearing slider types. Friction and stiction were captured during testing by a set of strain gauges. System parameters were varied to investigate their effect on tribology at the head/disk interface. Chosen parameters were disk spinning velocity, slider fly height, temperature, humidity and intercycle pause. The effect of different disk texturing methods was also studied. Models were proposed to explain the influence of these parameters on tribology. Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) were used to study head and disk topography at various test stages and to provide physical parameters to verify the models. X-ray Photoelectron Spectroscopy (XPS) was employed to identify surface composition and determine if any chemical changes had occurred as a result of testing. The parameters most likely to influence the interface were identified for both CSS and drag testing. Neural Network modelling was used to substantiate results. Topographical AFM scans of disk and slider were exported numerically to file and explored extensively. Techniques were developed which improved line and area analysis. A method for detecting surface contacts was also deduced, results supported and explained observed AFT behaviour. Finally surfaces were computer generated to simulate real disk scans, this allowed contact analysis of many types of surface to be performed. Conclusions were drawn about what disk characteristics most affected contacts and hence friction, stiction and wear.
Resumo:
It has long been sought to measure ocular accommodation continuously in human factor applications such as driving or flying. Open-field autorefractors such as the Canon R-1 could be converted to allow continuous, objective recording, but steady eye fixation and head immobilisation were essential for the measurements to be valid. Image analysis techniques utilised by newer open-view autorefractors such as the Shin-Nippon SRW-5000 are more tolerant to head and eye movements, but perhaps the technique with the greatest potential for the measurement of accommodation in human factor applications is photoretinoscopy. This paper examines the development of techniques for high temporal measurements of accommodation and reports on the tolerance of one such recent commercial instrument, the PowerRefractor (PlusOptiX). The instrument was found to be tolerant to eye movements from the optical axis of the instrument (∼0.50 DS change in apparent accommodation with gaze 25° eccentric to the optical axis), longitudinal head movement (<0.25 DS from 8 cm towards and 20 cm away from the correct photorefractor to eye distance) and changes in background illuminance (<0.25 DS from 0.5 to 20 cd m-2 target luminance). The PowerRefractor also quantifies the direction of gaze and pupil size, but is unable to take measurements with small pupils <3.7 ±1.0 mm. © 2002 The College of Optometrists.
Resumo:
This research develops a low cost remote sensing system for use in agricultural applications. The important features of the system are that it monitors the near infrared and it incorporates position and attitude measuring equipment allowing for geo-rectified images to be produced without the use of ground control points. The equipment is designed to be hand held and hence requires no structural modification to the aircraft. The portable remote sensing system consists of an inertia measurement unit (IMU), which is accelerometer based, a low-cost GPS device and a small format false colour composite digital camera. The total cost of producing such a system is below GBP 3000, which is far cheaper than equivalent existing systems. The design of the portable remote sensing device has eliminated bore sight misalignment errors from the direct geo-referencing process. A new processing technique has been introduced for the data obtained from these low-cost devices, and it is found that using this technique the image can be matched (overlaid) onto Ordnance Survey Master Maps at an accuracy compatible with precision agriculture requirements. The direct geo-referencing has also been improved by introducing an algorithm capable of correcting oblique images directly. This algorithm alters the pixels value, hence it is advised that image analysis is performed before image georectification. The drawback of this research is that the low-cost GPS device experienced bad checksum errors, which resulted in missing data. The Wide Area Augmented System (WAAS) correction could not be employed because the satellites could not be locked onto whilst flying. The best GPS data were obtained from the Garmin eTrex (15 m kinematic and 2 m static) instruments which have a highsensitivity receiver with good lock on capability. The limitation of this GPS device is the inability to effectively receive the P-Code wavelength, which is needed to gain the best accuracy when undertaking differential GPS processing. Pairing the carrier phase L1 with the pseudorange C/A-Code received, in order to determine the image coordinates by the differential technique, is still under investigation. To improve the position accuracy, it is recommended that a GPS base station should be established near the survey area, instead of using a permanent GPS base station established by the Ordnance Survey.
Resumo:
The goal of this paper is to model normal airframe conditions for helicopters in order to detect changes. This is done by inferring the flying state using a selection of sensors and frequency bands that are best for discriminating between different states. We used non-linear state-space models (NLSSM) for modelling flight conditions based on short-time frequency analysis of the vibration data and embedded the models in a switching framework to detect transitions between states. We then created a density model (using a Gaussian mixture model) for the NLSSM innovations: this provides a model for normal operation. To validate our approach, we used data with added synthetic abnormalities which was detected as low-probability periods. The model of normality gave good indications of faults during the flight, in the form of low probabilities under the model, with high accuracy (>92 %). © 2013 IEEE.