10 resultados para Flower Senescence
em Aston University Research Archive
Resumo:
The role of lipoxygenase (lox) in senescence ofAlstroemeria peruviana flowers was investigated using a combination of in vitro assays and chemical profiling of the lipid oxidation products generated. Phospholipids and galactolipids were extensively degraded during senescence in both sepals and petals and the ratio of saturated/unsaturated fatty acids increased. Lox protein levels and enzymatic activity declined markedly after flower opening. Stereochemical analysis of lox products showed that 13-lox was the major activity present in both floral tissues and high levels of 13-keto fatty acids were also synthesized. Lipid hydroperoxides accumulated in sepals, but not in petals, and sepals also had a higher chlorophyll to carotenoid ratio that favors photooxidation of lipids. Loss of membrane semipermeability was coincident for both tissue types and was chronologically separated from lox activity that had declined by over 80% at the onset of electrolyte leakage. Thus, loss of membrane function was not related to lox activity or accumulation of lipid hydroperoxides per se and differs in these respects from other ethylene-insensitive floral tissues representing a novel pattern of flower senescence.
Resumo:
-In the Liliaceous species Alstroemeria, petal senescence is characterized by wilting and inrolling, terminating in abscission 8-10 d after flower opening. -In many species, flower development and senescence involves programmed cell death (PCD). PCD in Alstroemeria petals was investigated by light (LM) and transmission electron microscopy (TEM) (to study nuclear degradation and cellular integrity), DNA laddering and the expression programme of the DAD-1 gene. -TEM showed nuclear and cellular degradation commenced before the flowers were fully open and that epidermal cells remained intact whilst the mesophyll cells degenerated completely. DNA laddering increased throughout petal development. Expression of the ALSDAD-1 partial cDNA was shown to be downregulated after flower opening. -We conclude that some PCD processes are started extremely early and proceed throughout flower opening and senescence, whereas others occur more rapidly between stages 4-6 (i.e. postanthesis). The spatial distribution of PCD across the petals is discussed. Several molecular and physiological markers of PCD are present during Alstroemeria petal senescence. © New Phytologist (2003).
Resumo:
The functional life of the flower is terminated by senescence and/or abscission. Multiple processes contribute to produce the visible signs of petal wilting and inrolling that typify senescence, but one of the most important is that of protein degradation and remobilization. This is mediated in many species through protein ubiquitination and the action of specific protease enzymes. This paper reports the changes in protein and protease activity during development and senescence of Alstroemeria flowers, a Liliaceous species that shows very little sensitivity to ethylene during senescence and which shows perianth abscission 8-10 d after flower opening. Partial cDNAs of ubiquitin (ALSUQ1) and a putative cysteine protease (ALSCYP1) were cloned from Alstroemeria using degenerate PCR primers and the expression pattern of these genes was determined semi-quantitatively by RT-PCR. While the levels of ALSUQ1 only fluctuated slightly during floral development and senescence, there was a dramatic increase in the expression of ALSCYP1 indicating that this gene may encode an important enzyme for the proteolytic process in this species. Three papain class cysteine protease enzymes showing different patterns of activity during flower development were identified on zymograms, one of which showed a similar expression pattern to the cysteine protease cDNA.
Resumo:
The delicately orchestrated process of bone fracture healing is not always successful and long term non union of fractured bone occurs in 5-20% of all cases. Atrophic fracture non unions have been described as the most difficult to treat and this is thought to arise through a cellular and local failure of osteogenesis. However, little is known about the presence and osteogenic proficiency of cells in the local area of non union tissue. We have examined the growth and differentiation potential of cells isolated from human non union tissues compared with normal human bone marrow mesenchymal stromal cells (BMSC). We report the isolation and culture expansion of a population of non union stromal cells (NUSC) which have a CD profile similar to that of BMSC, i.e. CD34-ve, CD45-ve and CD105+ve. The NUSC demonstrated multipotentiality and differentiated to some extent along chondrogenic, adipogenic and osteogenic lineages. However, and importantly, the NUSC showed significantly reduced osteogenic differentiation and mineralization in vitro compared to BMSC. We also found increased levels of cell senescence in NUSC compared to BMSC based on culture growth kinetics and cell positivity for senescence associated beta galactosidase (SA-beta-Gal) activity. The reduced capacity of NUSC to form osteoblasts was associated with significantly elevated secretion of Dickkopf-1 (Dkk-1) which is an important inhibitor of Wnt signalling during osteogenesis, compared to BMSC. Conversely, treating BMSC with levels of rhDkk-1 that were equivalent to those levels secreted by NUSC inhibited the capacity of BMSC to undergo osteogenesis. Treating BMSC with NUSC conditioned medium also inhibited the capacity of the BMSC to undergo osteogenic differentiation when compared to their treatment with BMSC conditioned medium. Our results suggest that the development of fracture non union is linked with a localised reduced capacity of cells to undergo osteogenesis, which in turn is associated with increased cell senescence and Dkk-1 secretion.
Resumo:
South Asians have a higher risk of type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD) than white Caucasians, for a given BMI. Premature biological ageing, assessed by reduction in telomere length (TL), may be mediated by factors resulting from altered metabolic profiles associated with obesity. We hypothesise that ethnicity and metabolic status represent detrimental factors contributing to premature biological ageing. Therefore we assessed TL in two South Asian, age and BMI-matched cohorts [T2DM (n = 142) versus non-T2DM (n = 76)] to determine the effects of BMI, gender, lipid and CVD profile on biological ageing. Genomic DNA was obtained from the UKADS cohort; biochemical and anthropometric data was collected and TL was measured by quantitative real-time PCR. Our findings indicated a gender-specific effect with reduced TL in T2DM men compared with non-T2DM men (P = 0.006). Additionally, in T2DM men, TL was inversely correlated with triglycerides and total cholesterol (r = -0.419, P <0.01; r = -0.443, P <0.01). In summary, TL was reduced amongst South Asian T2DM men and correlated with triglycerides and total cholesterol. This study highlights enhanced biological ageing among South Asian, T2DM men, which appears to be tracked by changes in lipids and BMI, suggesting that raised lipids and BMI may directly contribute to premature ageing.
Resumo:
The diagnosis and monitoring of ocular disease presents considerable clinical difficulties for two main reasons i) the substantial physiological variation of anatomical structure of the visual pathway and ii) constraints due to technical limitations of diagnostic hardware. These are further confounded by difficulties in detecting early loss or change in visual function due to the masking of disease effects, for example, due to a high degree of redundancy in terms of nerve fibre number along the visual pathway. This thesis addresses these issues across three areas of study: 1. Factors influencing retinal thickness measures and their clinical interpretation As the retina is the principal anatomical site for damage associated with visual loss, objective measures of retinal thickness and retinal nerve fibre layer thickness are key to the detection of pathology. In this thesis the ability of optical coherence tomography (OCT) to provide repeatable and reproducible measures of retinal structure at the macula and optic nerve head is investigated. In addition, the normal physiological variations in retinal thickness and retinal nerve fibre layer thickness are explored. Principal findings were: • Macular retinal thickness and optic nerve head measurements are repeatable and reproducible for normal subjects and diseased eyes • Macular and retinal nerve fibre layer thickness around the optic nerve correlate negatively with axial length, suggesting that larger eyes have thinner retinae, potentially making them more susceptible to damage or disease • Foveola retinal thickness increases with age while retinal nerve fibre layer thickness around the optic nerve head decreases with age. Such findings should be considered during examination of the eye with suspect pathology or in long-term disease monitoring 2. Impact of glucose control on retinal anatomy and function in diabetes Diabetes is a major health concern in the UK and worldwide and diabetic retinopathy is a major cause of blindness in the working population. Objective, quantitative measurements of retinal thickness. particularly at the macula provide essential information regarding disease progression and the efficacy of treatment. Functional vision loss in diabetic patients is commonly observed in clinical and experimental studies and is thought to be affected by blood glucose levels. In the first study of its kind, the short term impact of fluctuations in blood glucose levels on retinal structure and function over a 12 hour period in patients with diabetes are investigated. Principal findings were: • Acute fluctuations in blood glucose levels are greater in diabetic patients than normal subjects • The fluctuations in blood glucose levels impact contrast sensitivity scores. SWAP visual fields, intraocular pressure and diastolic pressure. This effect is similar for type 1 and type 2 diabetic patients despite the differences in their physiological status. • Long-term metabolic control in the diabetic patient is a useful predictor in the fluctuation of contrast sensitivity scores. • Large fluctuations in blood glucose levels and/or visual function and structure may be indicative of an increased risk of development or progression of retinopathy 3. Structural and functional damage of the visual pathway in glaucomatous optic neuropathy The glaucomatous eye undergoes a number of well documented pathological changes including retinal nerve fibre loss and optic nerve head damage which is correlated with loss of functional vision. In experimental glaucoma there is evidence that glaucomatous damage extends from retinal ganglion cells in the eye, along the visual pathway, to vision centres in the brain. This thesis explores the effects of glaucoma on retinal nerve fibre layer thickness, ocular anterior anatomy and cortical structure, and its correlates with visual function in humans. Principal findings were: • In the retina, glaucomatous retinal nerve fibre layer loss is less marked with increasing distance from the optic nerve head, suggesting that RNFL examination at a greater distance than traditionally employed may provide invaluable early indicators of glaucomatous damage • Neuroretinal rim area and retrobulbar optic nerve diameter are strong indicators of visual field loss • Grey matter density decreases at a rate of 3.85% per decade. There was no clear evidence of a disease effect • Cortical activation as measured by fMRI was a strong indicator of functional damage in patients with significant neuroretinal rim loss despite relatively modest visual field defects These investigations have shown that the effects of senescence are evident in both the anterior and posterior visual pathway. A variety of anatomical and functional diagnostic protocols for the investigation of damage to the visual pathway in ocular disease are required to maximise understanding of the disease processes and thereby optimising patient care.
Resumo:
In this study the impact of senescence and harvest time in Miscanthus on the quality of fast pyrolysis liquid (bio-oil) was investigated. Bio-oil was produced using a 1kgh fast pyrolysis reactor to obtain a quantity of bio-oil comparable with existing industrial reactors. Bio-oil stability was measured using viscosity, water content, pH and heating value changes under specific conditions. Plant developmental characteristics were significantly different (P=0.05) between all harvest points. The stage of crop senescence was correlated with nutrient remobilisation (N, P, K; r=0.9043, r=0.9920, r=0.9977 respectively) and affected bio-oil quality. Harvest time and senescence impacted bio-oil quality and stability. For fast pyrolysis processing of Miscanthus, the harvest time of Miscanthus can be extended to cover a wider harvest window whilst still maintaining bio-oil quality but this may impact mineral depletion in, and long term sustainability of, the crop unless these minerals can be recycled. © 2012 Elsevier Ltd.
Resumo:
The vase-life of Alstroemeria (cv. Rebecca) flowers is terminated when the tepals abscise. Abscission was accelerated by both chloroethylphosphonic acid (CEPA) and 1-aminocyclopropane-1-carboxylic acid (ACC). Petals abscised 24 h earlier compared with controls, when isolated cymes were placed in 340 nM CEPA, and earlier still when higher concentrations were used. This suggests that flowers of this Alstroemeria cultivar are very ethylene sensitive. Treatment with silver thiosulphate (STS) overcame the effects of exposure to CEPA and delayed perianth abscission of untreated isolated flowers by 3-4 days. The inclusion of 1% sucrose in the vase solution also extended longevity but not by as much as STS treatment; combined STS and sucrose treatments did not increase longevity beyond that of either treatment alone. However, removal of the young buds from the axil of the first flower was the most effective treatment to extend vase-life and encouraged the growth and development of the remaining flower. Flowers on cut inflorescences from which young axillary buds were trimmed more than doubled in fresh weight 6 days after flower opening compared with an increase of only 70-80% in those untreated or treated with STS and/or sucrose. Growth was less in isolated cymes but followed a similar pattern. The effect of STS and/or sucrose treatment was synergistic with the trimming treatment and thus the vase-life of trimmed, STS and sucrose-treated flowers was over 7 days longer than that for untreated controls. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Postharvest senescence in broccoli (Brassica oleracea L. var Italica) florets results in phenotypic changes similar to those seen in developmental leaf senescence. To compare these two processes in more detail, we investigated molecular and biochemical changes in broccoli florets stored at two different temperatures after harvest. We found that storage at cooler temperatures delayed the symptoms of senescence at both the biochemical and gene expression levels. Changes in key biochemical components (lipids, protein, and chlorophyll) and in gene expression patterns occurred in the harvested tissue well before any visible signs of senescence were detected. Using previously identified senescence-enhanced genes and also newly isolated, differentially expressed genes, we found that the majority of these showed a similar enhancement of expression in postharvest broccoli as in developmental leaf senescence. At the biochemical level, a rapid loss of membrane fatty acids was detected after harvest, when stored at room temperature. However, there was no corresponding increase in levels of lipid peroxidation products. This, together with an increased expression of protective antioxidant genes, indicated that, in the initial stages of postharvest senescence, an orderly dismantling of the cellular constituents occurs, using the available lipid as an energy source. Postharvest changes in broccoli florets, therefore, show many similarities to the processes of developmental leaf senescence.
Resumo:
Aim: Dysregulated glucose homeostasis is a hallmark of Type 2diabetes. A distinctive feature of ageing is the accumulation ofsenescent cells, defined as cells that have undergone irreversible lossof proliferative capacity. Characteristic of senescent cells is thesenescence-associated secretory phenotype (SASP) involving theproduction of factors which reinforce senescence arrest in neigh-bouring tissue environments. We hypothesise that SASP inducesmetabolic dysfunction in non-senescent cells, impairing glucosemetabolism and propagating insulin resistance. We sought todetermine the effect of SASP on glucose homeostasis in hepatic,adipose and skeletal muscle cell lines. Methods: Human dermal fibroblasts were subjected to a geno-toxic dose of doxorubicin to induce senescence, confirmed using ab-galactosidase assay. Conditioned media containing SASP werecollected post 24h and 48h of inducing senescence and used at20% and 40% concentrations to treat AML-12 hepatocytes, 3T3-L1 adipocytes and C2C12 myocytes for 24h and 48h. Cells andmedia were collected and glucose and lipid concentrations weremeasured before and after the respective incubation periods. Results: Cell media obtained from C2C12 myocytes exposed to40% SASP for 24h and 48h and AML-12 hepatocytes after 48hexhibited significantly higher concentrations of glucose in com-parison to control media (p < 0.0001, p < 0.05) suggesting areduced glucose uptake. Glucose utilisation remained unchanged in3T3-L1 cells. Conclusion: Our data suggest an important role for SASP inaltering glucose homeostasis and identify SASP as a potentialmediator between ageing and the increase in age-related insulinresistance.