19 resultados para Flow cytometry analysis

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The avidity of conidia and 48-h-old germlings of Coniothyrium minitans for FITC-conjugated lectins was characterised by flow cytometry and digital microscopy. Six isolates of C. minitans representing three morphological types were compared. Binding of Con A, SBA and WGA by conidial populations varied markedly in extent and pattern between isolates, however, with increasing culture age, conidia from all isolates demonstrated a significant reduction in lectin avidity. Germling isolates bound significantly different amounts of lectins and lectin binding differed significantly with locality. Spore walls of all germlings from all isolates bound more ConA compared with hyphal apices and mature hyphal walls. In contrast, hyphal apices of the majority of germling isolates, readily bound SBA and mature hyphal walls of germling isolates bound more WGA than other regions of the germlings. Such differential lectin binding by conidia and germlings may influence their specific surface interactions and adherence characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The timeline imposed by recent worldwide chemical legislation is not amenable to conventional in vivo toxicity testing, requiring the development of rapid, economical in vitro screening strategies which have acceptable predictive capacities. When acquiring regulatory neurotoxicity data, distinction on whether a toxic agent affects neurons and/or astrocytes is essential. This study evaluated neurofilament (NF) and glial fibrillary acidic protein (GFAP) directed single-cell (S-C) ELISA and flow cytometry as methods for distinguishing cell-specific cytoskeletal responses, using the established human NT2 neuronal/astrocytic (NT2.N/A) co-culture model and a range of neurotoxic (acrylamide, atropine, caffeine, chloroquine, nicotine) and non-neurotoxic (chloramphenicol, rifampicin, verapamil) test chemicals. NF and GFAP directed flow cytometry was able to identify several of the test chemicals as being specifically neurotoxic (chloroquine, nicotine) or astrocytoxic (atropine, chloramphenicol) via quantification of cell death in the NT2.N/A model at cytotoxic concentrations using the resazurin cytotoxicity assay. Those neurotoxicants with low associated cytotoxicity are the most significant in terms of potential hazard to the human nervous system. The NF and GFAP directed S-C ELISA data predominantly demonstrated the known neurotoxicants only to affect the neuronal and/or astrocytic cytoskeleton in the NT2.N/A cell model at concentrations below those affecting cell viability. This report concluded that NF and GFAP directed S-C ELISA and flow cytometric methods may prove to be valuable additions to an in vitro screening strategy for differentiating cytotoxicity from specific neuronal and/or astrocytic toxicity. Further work using the NT2.N/A model and a broader array of toxicants is appropriate in order to confirm the applicability of these methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grafting of antioxidants and other modifiers onto polymers by reactive extrusion, has been performed successfully by the Polymer Processing and Performance Group at Aston University. Traditionally the optimum conditions for the grafting process have been established within a Brabender internal mixer. Transfer of this batch process to a continuous processor, such as an extruder, has, typically, been empirical. To have more confidence in the success of direct transfer of the process requires knowledge of, and comparison between, residence times, mixing intensities, shear rates and flow regimes in the internal mixer and in the continuous processor.The continuous processor chosen for the current work in the closely intermeshing, co-rotating twin-screw extruder (CICo-TSE). CICo-TSEs contain screw elements that convey material with a self-wiping action and are widely used for polymer compounding and blending. Of the different mixing modules contained within the CICo-TSE, the trilobal elements, which impose intensive mixing, and the mixing discs, which impose extensive mixing, are of importance when establishing the intensity of mixing. In this thesis, the flow patterns within the various regions of the single-flighted conveying screw elements and within both the trilobal element and mixing disc zones of a Betol BTS40 CICo-TSE, have been modelled using the computational fluid dynamics package Polyflow. A major obstacle encountered when solving the flow problem within all of these sets of elements, arises from both the complex geometry and the time-dependent flow boundaries as the elements rotate about their fixed axes. Simulation of the time dependent boundaries was overcome by selecting a number of sequential 2D and 3D geometries, used to represent partial mixing cycles. The flow fields were simulated using the ideal rheological properties of polypropylene and characterised in terms of velocity vectors, shear stresses generated and a parameter known as the mixing efficiency. The majority of the large 3D simulations were performed on the Cray J90 supercomputer situated at the Rutherford-Appleton laboratories, with pre- and postprocessing operations achieved via a Silicon Graphics Indy workstation. A mechanical model was constructed consisting of various CICo-TSE elements rotating within a transparent outer barrel. A technique has been developed using coloured viscous clays whereby the flow patterns and mixing characteristics within the CICo-TSE may be visualised. In order to test and verify the simulated predictions, the patterns observed within the mechanical model were compared with the flow patterns predicted by the computational model. The flow patterns within the single-flighted conveying screw elements in particular, showed good agreement between the experimental and simulated results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Acanthamoebae, in common with other protozoa, readily endocytose particulate material, which in turn may lead to the spread of infectious disease. Methods: Evaluation and quantification of plain and carboxylate FITC-microsphere association with acanthamoebal trophzoites was undertaken using a combination of flow cytometry and confocal microscopy. Trophozoites from strains and species of Acanthamoeba were exposed to plain and carboxylate FITC-microspheres. Microsphere size and aspects such as trophozoite starvation, maturity, and exposure to metabolic inhibitors were assessed. Results: All species and strains of Acanthamoeba readily endocytosed plain and carboxylate microspheres. Starving trophozoites significantly increased binding and potential ingestion of microspheres, whereas trophozoites of increasing maturity lost such abilities. Trophozoites showed a significant preference for 2.0- and 3.0-μm-diameter microspheres when compared with other sizes, which in turn could occupy much of the cytoplasm. The physiological inhibitors sodium azide, 2,4-clinitrophenol, and cytochalasin B reduced microsphere association with trophozoites; however, some microspheres still bound and associated with trophozoites after inhibitor exposure, a manifestation of both active and inactive agent involvement in microsphere endocytosis. Conclusions: Even though the origins of microsphere binding by acanthamoebal trophozoite remains shrouded, the combination of flow cytometry and confocal microscopy supported synergistic quantification and qualification of trophozoite-microsphere endocytosis. © 2006 International Society for Analytical Cytology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential cytotoxicity of two hexanedione food additives (2,3 and 3,4 isomers) was evaluated in comparison with the neurotoxic hexane metabolite 2,5-hexanedione in the human SK-N-SH neuroblastoma line using the MTT assay to indicate mitochondrial dehydrogenase activity and flow cytometry to monitor the cell cycle over 48 h. The IC50s of the 2,3-hexanedione (3.3 ± 0.1 mM) and 3,4-hexanedione (3.5 ± 0.1 mM), indicated that the sensitivity of the cells was approximately seven-fold greater to these toxins compared with the 2,5 derivative (IC50 of 22.4 ± 0.2 mM). Comparison between the respective IC50s of the 2,3-hexanedione and 3,4-hexanedione revealed no difference between the two isomers in terms of their effects on MTT turnover. With flow cytometry analysis, all three hexanediones showed increases in apoptosis within their respective concentration ranges of toxicity shown previously by MTT. In the presence of 2,5-hexanedione, between 8.5 and 17 mM concentrations, there was a significant increase in apoptotic nucleoids which was accompanied by a significant fall in the percentage of nucleoids in the G0/G1 phase (72.4 ± 0.3-45.3 ± 0.6%,), and a rise in the numbers of cells in the G2/M phase. This is likely to indicate growth arrest at cell cycle G2/M checkpoint in response to toxin damage. G2/M accumulation was also shown with 3,4 and 2,3 HD, which was maximal at much lower concentrations (approximately 4 and 3 mM, respectively). Arrest at G1 and G2/M phase is indicative of inhibition of the cell cycle at the stages of DNA replication and chromosome segregation, respectively. It was also apparent that flow cytometry, rather than the MTT assay, did distinguish between the effects of the α-diketones 2,3-hexanedione and 3,4-hexanedione on the cell cycle. At a concentration of 5.8 mM 3,4-hexanedione, the percentage of apoptotic nucleoids was 10.9 ± 0.8% whilst apoptosis induced by 3,4-hexanedione had already reached a maximal level of 60.4 ± 0.5%. In summary, flow cytometry indicated that the 3,4-hexanedione derivative was more toxic than its 2,3 isomer and that both food additives caused interruption in the neuroblastoma cell cycle and further investigation may be required to assess if these α-diketones present in diets pose any possible risks to human health. © 2006 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular insufficiency and retinal ischemia precede many proliferative retinopathies and stimulate secretion of various vasoactive growth factors, including vascular endothelial growth factor (VEGF) and placenta growth factor (PlGF). It is unclear, however, how PlGF, which is elevated in proliferative diabetic retinopathy and is a VEGF homolog that binds only to VEGF receptor (VEGFR)-1, promotes pathological angiogenesis. When primary microvascular endothelial cells were grown on collagen gels, PlGF-containing ligands upregulated Bcl-2 expression and stimulated the formation of capillary-like tube networks that were retained for up to 14 days in culture. The inhibition of VEGFR-1 results in a dramatic decrease in the number of capillary connections, indicating that VEGFR-1 ligands promote branching angiogenesis. In contrast, VEGF-induced tube formations and Bcl-2 expression were significantly decreased at the end of this period. Flow cytometry analysis of annexin-V/propidium iodide-stained cells revealed that PlGF and PlGF/VEGF heterodimer inhibited apoptosis in serum-deprived endothelial cells. These two growth factors stimulated a survival signaling pathway phosphatidylinositol 3-kinase (PI3K), as identified by increased Akt phosphorylation and because blocking PI3K signalling by adenovirus-mediated overexpression of wild-type phosphatase and tensin homolog on chromosome 10 (PTEN) disrupted angiogenesis and decreased Bcl-2 expression by PlGF and PlGF/VEGF heterodimer, whereas a dominant-negative PTEN mutant enhanced endothelial sprout formation and Bcl-2 expression. Together, these findings indicate that PlGF-containing ligands contribute to pathological angiogenesis by prolonging cell survival signals and maintaining vascular networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: Characterization of the representative protozoan Acanthamoeba polyphaga surface carbohydrate exposure by a novel combination of flow cytometry and ligand-receptor analysis. Methods and Results: Trophozoite and cyst morphological forms were exposed to a panel of FITC-lectins. Population fluorescence associated with FITC-lectin binding to acanthamoebal surface moieties was ascertained by flow cytometry. Increasing concentrations of representative FITC-lectins, saturation binding and determination of K d and relative Bmax values were employed to characterize carbohydrate residue exposure. FITC-lectins specific for N-acetylglucosamine, N-acetylgalactosamine and mannose/glucose were readily bound by trophozoite and cyst surfaces. Minor incremental increases in FITC-lectin concentration resulted in significant differences in surface fluorescence intensity and supported the calculation of ligand-binding determinants, Kd and relative B max, which gave a trophozoite and cyst rank order of lectin affinity and surface receptor presence. Conclusions: Trophozoites and cysts expose similar surface carbohydrate residues, foremost amongst which is N-acetylglucosamine, in varying orientation and availability. Significance and Impact of the Study: The outlined versatile combination of flow cytometry and ligand-receptor analysis allowed the characterization of surface carbohydrate exposure by protozoan morphological forms and in turn will support a valid comparison of carbohydrate exposure by other single-cell protozoa and eucaryotic microbes analysed in the same manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell surface properties of the basidiomycete yeast Cryptococcus neoformans were investigated with a combination of novel and well proven approaches. Non-specific cell adhesion forces, as well as exposed carbohydrate and protein moieties potentially associated with specific cellular interaction, were analysed. Experimentation and analysis employed cryptococcal cells of different strains, capsular status and culture age. Investigation of cellular charge by particulate microelectrophoresis revealed encapsulated yeast forms of C. neoformans manifest a distinctive negative charge regardless of the age of cells involved; in turn, the neutral charge of acapsulate yeasts confirmed that the polysaccharide capsule, and not the cell wall, was responsible for this occurrence. Hydrophobicity was measured by MATH and HICH techniques, as well as by the attachment of polystyrene microspheres. All three techniques, where applicable, found C. neoformans yeast to be consistently hydrophilic; this state varied little regardless of strain and culture age. Cell surface carbohydrates and protein were investigated with novel fluorescent tagging protocols, flow cytometry and confocal microscopy. Cell surface carbohydrate was identified by controlled oxidation in association with biotin hydrazide and fluorescein-streptavidin tagging. Marked amounts of carbohydrate were measured and observed on the cell wall surface of cryptococcal yeasts. Furthermore, tagging of carbohydrates with selective fluorescent lectins supported the identification, measurement and observation of substantial amounts of mannose, glucose and N-acetyl-glucosamine. Cryptococcal cell surface protein was identified using sulfo-NHS-biotin with fluorescein-streptavidin, and then readily quantified by flow cytometry. Confocal imaging of surface exposed carbohydrate and protein revealed common localised areas of vivid fluorescence associated with buds, bud scars and nascent daughter cells. Carbohydrate and protein fluorescence often varied between strains, culture age and capsule status of cells examined. Finally, extension of protein tagging techniques resulted in the isolation and extraction of two biotinylated proteins from the yeast cell wall surface of an acapsulate strain of C.neoformans.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background Recent in vivo and in vitro studies in non-neuronal and neuronal tissues have shown that different pathways of macrophage activation result in cells with different properties. Interleukin (IL)-6 triggers the classically activated inflammatory macrophages (M1 phenotype), whereas the alternatively activated macrophages (M2 phenotype) are anti-inflammatory. The objective of this study was to clarify the effects of a temporal blockade of IL-6/IL-6 receptor (IL-6R) engagement, using an anti-mouse IL-6R monoclonal antibody (MR16-1), on macrophage activation and the inflammatory response in the acute phase after spinal cord injury (SCI) in mice. Methods MR16-1 antibodies versus isotype control antibodies or saline alone were administered immediately after thoracic SCI in mice. SC tissue repair was compared between the two groups by Luxol fast blue (LFB) staining for myelination and immunoreactivity for the neuronal markers growth-associated protein (GAP)-43 and neurofilament heavy 200 kDa (NF-H) and for locomotor function. The expression of T helper (Th)1 cytokines (interferon (IFN)-? and tumor necrosis factor-a) and Th2 cytokines (IL-4, IL-13) was determined by immunoblot analysis. The presence of M1 (inducible nitric oxide synthase (iNOS)-positive, CD16/32-positive) and M2 (arginase 1-positive, CD206-positive) macrophages was determined by immunohistology. Using flow cytometry, we also quantified IFN-? and IL-4 levels in neutrophils, microglia, and macrophages, and Mac-2 (macrophage antigen-2) and Mac-3 in M2 macrophages and microglia. Results LFB-positive spared myelin was increased in the MR16-1-treated group compared with the controls, and this increase correlated with enhanced positivity for GAP-43 or NF-H, and improved locomotor Basso Mouse Scale scores. Immunoblot analysis of the MR16-1-treated samples identified downregulation of Th1 and upregulation of Th2 cytokines. Whereas iNOS-positive, CD16/32-positive M1 macrophages were the predominant phenotype in the injured SC of non-treated control mice, MR16-1 treatment promoted arginase 1-positive, CD206-positive M2 macrophages, with preferential localization of these cells at the injury site. MR16-1 treatment suppressed the number of IFN-?-positive neutrophils, and increased the number of microglia present and their positivity for IL-4. Among the arginase 1-positive M2 macrophages, MR16-1 treatment increased positivity for Mac-2 and Mac-3, suggestive of increased phagocytic behavior. Conclusion The results suggest that temporal blockade of IL-6 signaling after SCI abrogates damaging inflammatory activity and promotes functional recovery by promoting the formation of alternatively activated M2 macrophages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Acanthamoeba polyphaga trophozoites bind yeast cells of Candida albicans isolates within a few hours, leaving few cells in suspension or still attached to trophozoite surfaces. The nature of yeast cell recognition, mediated by an acanthamoebal trophozoite mannose binding protein is confirmed by experiments utilizing concentration dependent mannose hapten blocking. Similarly, acapsulate cells of Cryptococcus neoformans are also bound within a relatively short timescale. However, even after protracted incubation many capsulate cells of Cryptococcus remain in suspension, suggesting that the capsulate cell form of this species is not predated by acanthamoebal trophozoites. Further aspects of the association of Acanthamoeba and fungi are apparent when studying their interaction with conidia of the biocontrol agent Coniothyrium minitans. Conidia which readily bind with increasing maturity of up to 42 days, were little endocytosed and even released. Cell and conidial surface mannose as determined by FITC-lectin binding, flow cytometry with associated ligand binding analysis and hapten blocking studies demonstrates the following phenomena. Candida isolates and acapsulate Cryptococcus expose most mannose, while capsulate Cryptococcus cells exhibit least exposure commensurate with yeast cellular binding or lack of trophozoites. Conidia of Coniothyrium, albeit in a localized fashion, also manifest surface mannose exposure but as shown by Bmax values, in decreasing amounts with increasing maturity. Contrastingly such conidia experience greater trophozoite binding with maturation, thereby questioning the primacy of a trophozoite mannose-binding-protein recognition model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The surface nature of Acanthamoeba trophozoites and cysts was investigated with respect to cell surface charge, hydrophobicity and surface carbohydrate composition. Particulate microelectrophoresis revealed a marked negative charge for both morphological forms, though less for cyst surfaces. Hydrophobicity was determined by adhesion to n-hexadecane and indicated a relatively low hydrophobic nature of both forms, though less so for cysts. Surface carbohydrate composition was studied by the use of fluorescent lectins and flow cytometry, using a ligand-receptor approach for further in depth analysis of binding of particular lectins. These studies showed trophozoite and cyst surfaces to be rich in N-acetylglucosamine, N-acteylneuraminic acid, mannose and glucose, with the addition of N-acetylgalactosamine on cysts. The importance of such surface properties was investigated with respect to phagocytosis of polystyrene latex microspheres, of different surface types and size. Investigations into the optimum conditions of uptake of beads indicated a preference for a medium devoid of nutrients, such as saline, though temperature was not a factor. An amoebal predilection for beads of lower charge and greater hydrophobicity was demonstrated. Furthermore, a preference for the largest bead size used (2.0 m) was observed. The influence of either Con A or mannose or glucose on bead association was apparently limited. The fate of foreign DNA ingested by Acanthamoeba appeared to indicate that such DNA was destroyed, as it could not be detected following extraction procedures and PCR amplification.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The preparation and characterisation of novel biodegradable polymer fibres for application in tissue engineering and drug delivery are reported. Poly(e-caprolactone) (PCL) fibres were produced by wet spinning from solutions in acetone under low shear (gravity flow) conditions. The tensile strength and stiffness of as-spun fibres were highly dependent on the concentration of the spinning solution. Use of a 6% w/v solution resulted in fibres having strength and stiffness of 1.8 MPa and 0.01 GPa respectively, whereas these values increased to 9.9 MPa and 0.1 GPa when fibres were produced from 20% w/v solutions. Cold drawing to an extension of 500% resulted in further increases in fibre strength (up to 50 MPa) and stiffness (0.3 GPa). Hot drawing to 500% further increased the fibre strength (up to 81 MPa) and stiffness (0.5 GPa). The surface morphology of as-spun fibres was modified, to yield a directional grooved pattern by drying in contact with a mandrel having a machined topography characterised by a peak-peak separation of 91 mm and a peak height of 30 mm. Differential scanning calorimetery (DSC) analysis of as-spun fibres revealed the characteristic melting point of PCL at around 58°C and a % crystallinity of approximately 60%. The biocompatibility of as-spun fibres was assessed using cell culture. The number of attached 3T3 Swiss mouse fibroblasts, C2C12 mouse myoblasts and human umbilical vein endothelial cells (HUVECs) on as-spun, 500% cold drawn, and gelatin coated PCL fibres were observed. The results showed that the fibres promoted cell proliferation for 9 days in cell culture and was slightly lower than on tissue culture plastic. The morphology of all cell lines was assessed on the various PCL fibres using scanning electron microscopy. The cell function of HUVECs growing on the as-spun PCL fibres was evaluated. The ability HUVECs to induce an immune response when stimulated with lipopolysaccaride (LPS) and thereby to increase the amount of cell surface receptors was assessed by flow cytometry and reverse transcription-polymerase chain reaction (RT-PCR). The results showed that PCL fibres did not inhibit this function compared to TCP. As-spun PCL fibres were loaded with 1 % ovine albumin (OVA) powder, 1% OVA nanoparticles and 5% OVA nanoparticles by weight and the protein release was assessed in vitro. PCL fibres loaded with 1 % OVA powder released 70%, 1% OVA nanoparticle released 60% and the 5% OVA nanoparticle released 25% of their protein content over 28 days. These release figures did not alter when the fibres were subjected to lipase enzymatic degradation. The OVA released was examined for structural integrity by SDS-PAGE. This showed that the protein molecular weight was not altered after incorporation into the fibres. The bioactivity of progesterone was assessed following incorporation into PCL fibres. Results showed that the progesterone released had a pronounced effect on MCF-7 breast epithelial cells, inhibiting their proliferation. The PCL fibres display high fibre compliance, a potential for controlling the fibre surface architecture to promote contact guidance effects, favorable proliferation rate of fibroblasts, myoblasts and HUVECs and the ability to release pharmaceuticals. These properties recommended their use for 3-D scaffold production in soft tissue engineering and the fibres could also be exploited for controlled presentation and release of biopharmaceuticals such as growth factors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis presents an effective methodology for the generation of a simulation which can be used to increase the understanding of viscous fluid processing equipment and aid in their development, design and optimisation. The Hampden RAPRA Torque Rheometer internal batch twin rotor mixer has been simulated with a view to establishing model accuracies, limitations, practicalities and uses. As this research progressed, via the analyses several 'snap-shot' analysis of several rotor configurations using the commercial code Polyflow, it was evident that the model was of some worth and its predictions are in good agreement with the validation experiments, however, several major restrictions were identified. These included poor element form, high man-hour requirements for the construction of each geometry and the absence of the transient term in these models. All, or at least some, of these limitations apply to the numerous attempts to model internal mixes by other researchers and it was clear that there was no generally accepted methodology to provide a practical three-dimensional model which has been adequately validated. This research, unlike others, presents a full complex three-dimensional, transient, non-isothermal, generalised non-Newtonian simulation with wall slip which overcomes these limitations using unmatched ridding and sliding mesh technology adapted from CFX codes. This method yields good element form and, since only one geometry has to be constructed to represent the entire rotor cycle, is extremely beneficial for detailed flow field analysis when used in conjunction with user defined programmes and automatic geometry parameterisation (AGP), and improves accuracy for investigating equipment design and operation conditions. Model validation has been identified as an area which has been neglected by other researchers in this field, especially for time dependent geometries, and has been rigorously pursued in terms of qualitative and quantitative velocity vector analysis of the isothermal, full fill mixing of generalised non-Newtonian fluids, as well as torque comparison, with a relatively high degree of success. This indicates that CFD models of this type can be accurate and perhaps have not been validated to this extent previously because of the inherent difficulties arising from most real processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mood stabilising drugs such as lithium (LiCl) and valproic acid (VPA) are the first line agents for treating conditions such as Bipolar disorder and Epilepsy. However, these drugs have potential developmental effects that are not fully understood. This study explores the use of a simple human neurosphere-based in vitro model to characterise the pharmacological and toxicological effects of LiCl and VPA using gene expression changes linked to phenotypic alterations in cells. Treatment with VPA and LiCl resulted in the differential expression of 331 and 164 genes respectively. In the subset of VPA targeted genes, 114 were downregulated whilst 217 genes were upregulated. In the subset of LiCl targeted genes, 73 were downregulated and 91 were upregulated. Gene ontology (GO) term enrichment analysis was used to highlight the most relevant GO terms associated with a given gene list following toxin exposure. In addition, in order to phenotypically anchor the gene expression data, changes in the heterogeneity of cell subtype populations and cell cycle phase were monitored using flow cytometry. Whilst LiCl exposure did not significantly alter the proportion of cells expressing markers for stem cells/undifferentiated cells (Oct4, SSEA4), neurons (Neurofilament M), astrocytes (GFAP) or cell cycle phase, the drug caused a 1.4-fold increase in total cell number. In contrast, exposure to VPA resulted in significant upregulation of Oct4, SSEA, Neurofilament M and GFAP with significant decreases in both G2/M phase cells and cell number. This neurosphere model might provide the basis of a human-based cellular approach for the regulatory exploration of developmental impact of potential toxic chemicals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction - Monocytes, with 3 different subsets, are implicated in the initiation and progression of the atherosclerotic plaque contributing to plaque instability and rupture. Mon1 are the “classical” monocytes with inflammatory action, whilst Mon3 are considered reparative with fibroblast deposition ability. The function of the newly described Mon2 subset is yet to be fully described. In PCI era, fewer patients have globally reduced left ventricular ejection fraction post infarction, hence the importance of studying regional wall motion abnormalities and deformation at segmental levels using longitudinal strain. Little is known of the role for the 3 monocyte subpopulations in determining global strain in ST elevation myocardial infarction patients (STEMI). Conclusion In patients with normal or mildly impaired EF post infarction, higher counts of Mon1 and Mon2 are correlated with GLS within 7 days and at 6 months of remodelling post infarction. Adverse clinical outcomes in patients with reduced convalescent GLS were predicted with Mon1 and Mon2 suggestive of an inflammatory role for the newly identified Mon2 subpopulation. These results imply an important role for monocytes in myocardial healing when assessed by subclinical ventricular function indices. Methodology - STEMI patients (n = 101, mean age 64 ± 13 years; 69% male) treated with percutaneous revascularisation were recruited within 24 h post-infarction. Peripheral blood monocyte subpopulations were enumerated and characterised using flow cytometry after staining for CD14, CD16 and CCR2. Phenotypically, monocyte subpopulations are defined as: CD14++CD16-CCR2+ (Mon1), CD14++CD16+CCR2+ (Mon2) and CD14+CD16++CCR2- (Mon3). Phagocytic activity of monocytes was measured using flow cytometry and Ecoli commercial kit. Transthoracic 2D echocardiography was performed within 7 days and at 6 months post infarct to assess global longitudinal strain (GLS) via speckle tracking. MACE was defined as recurrent acute coronary syndrome and death. Results - STEMI patients with EF ≥50% by Simpson’s biplane (n = 52) had GLS assessed. Using multivariate regression analysis higher counts of Mon1 and Mon 2 and phagocytic activity of Mon2 were significantly associated with GLS (after adjusting for age, time to hospital presentation, and peak troponin levels) (Table 1). At 6 months, the convalescent GLS remained associated with higher counts of Mon1, Mon 2. At one year follow up, using multivariate Cox regression analysis, Mon1 and Mon2 counts were an independent predictor of MACE in patients with a reduced GLS (n = 21)